摘要:【高考数学对称问题知识总结】 高考数学知识点总结 ①点斜式: 高考数学对称问题知识 高考数学视角问题总结_高考
【高考数学对称问题知识总结】 高考数学知识点总结
①点斜式:高考数学对称问题知识
高考数学视角问题总结_高考数学题型讲解视频
高考数学视角问题总结_高考数学题型讲解视频
高考数学视角问题总结_高考数学题型讲解视频
对称问题是高中数学的重要内容之一,在高考数学试题中常出现一些构思新颖解法灵活的对称问题,为使对称问题的知识系统化。下面我给大家带来高考数学对称问题知识,希望对你有帮助。
一、点关于已知点或已知直线对称点问题
1、设点P(x,y)关于点(a,b)对称点为P′(x′,y′),
x′=2a-x
由中点坐标公式可得:y′=2b-y
2、点P(x,y)关于直线L:Ax+By+C=O的对称点为
x′=x-(Ax+By+C)
P′(x′,y′)则
y′=y-(AX+BY+C)
事实上:∵PP′⊥L及PP′的中点在直线L上,可得:Ax′+By′=-Ax-By-2C
解此方程组可得结论。
(-)=-1(B≠0)
特别地,点P(x,y)关于
1、x轴和y轴的对称点分别为(x,-y)和(-x,y)
2、直线x=a和y=a的对标点分别为(2a-x,y)和(x,2a-y)
3、直线y=x和y=-x的对称点分别为(y,x)和(-y,-x)
例1光线从A(3,4)发出后经过直线x-2y=0反射,再经过y轴反射,反射光线经过点B(1,5),求射入y轴后的反射线所在的直线方程。
解:如图,由公式可求得A关于直线x-2y=0的对称点
A′(5,0),B关于y轴对称点B′为(-1,5),直线A′B′的方程为5x+6y-25=0
`C(0,)
`直线BC的方程为:5x-6y+25=0
二、曲线关于已知点或已知直线的对称曲线问题
求已知曲线F(x,y)=0关于已知点或已知直线的对称曲线方程时,只须将曲线F(x,y)=O上任意一点(x,y)关于已知点或已知直线的对称点的坐标替换方程F(x,y)=0中相应的作称即得,由此我们得出以下结论。
1、曲线F(x,y)=0关于点(a,b)的对称曲线的方程是F(2a-x,2b-y)=0
2、曲线F(x,y)=0关于直线Ax+By+C=0对称的曲线方程是F(x-(Ax+By+C),y-(Ax+By+C))=0
特别地,曲线F(x,y)=0关于
(1)x轴和y轴对称的曲线方程分别是F(x,-y)和F(-x,y)=0
(2)关于直线x=a和y=a对称的曲线方程分别是F(2a-x,y)=0和F(x,2a-y)=0
(3)关于直线y=x和y=-x对称的曲线方程分别是F(y,x)=0和F(-y,-x)=0
除此以外还有以下两个结论:对函数y=f(x)的图象而言,去掉y轴左边图象,保留y轴右边的图象,并作关于y轴的对称图象得到y=f(|x|)的图象;保留x轴上方图象,将x轴下方图象翻折上去得到y=|f(x)|的图象。
例2(全国高考试题)设曲线C的方程是y=x3-x。将C沿x轴y轴正向分别平行移动t,s单位长度后得曲线C1:
1)写出曲线C1的方程
2)证明曲线C与C1关于点A(,)对称。
(1)解知C1的方程为y=(x-t)3-(x-t)+s
(2)证明在曲线C上任取一点B(a,b),设B1(a1,b1)是B关于A的对称点,由a=t-a1,b=s-b1,代入C的方程得:
s-b1=(t-a1)3-(t-a1)
`b1=(a1-t)3-(a1-t)+s
`B1(a1,b1)满足C1的方程
`B1在曲线C1上,反之易证在曲线C1上的点关于点A的对称点在曲线C上
`曲线C和C1关于a对称
我们用前面的结论来证:点P(x,y)关于A的对称点为P1(t-x,s-y),为了求得C关于A的对称曲线我们将其坐标代入C的方程,得:s-y=(t-x)3-(t-x)
`y=(x-t)3-(x-t)+s
此即为C1的方程,`C关于A的对称曲线即为C1。
三、曲线本身的对称问题
例如抛物线y2=-8x上任一点p(x,y)与x轴即y=0的对称点p′(x,-y),其坐标也满足方程y2=-8x,`y2=-8x关于x轴对称。
例3方程xy2-x2y=2x所表示的曲线:
A、关于y轴对称B、关于直线x+y=0对称
C、关于原点对称D、关于直线x-y=0对称
解:在方程中以-x换x,同时以-y换y得
`曲线关于原点对称。
函数图象本身关于直线和点的对称问题我们有如下几个重要结论:
1、函数f(x)定义线为R,a为常数,若对任意x∈R,均有f(a+x)=f(a-x),则y=f(x)的图象关于x=a对称。
这是因为a+x和a-x这两点分别列于a的左右两边并关于a对称,且其函数值相等,说明这两点关于直线x=a对称,由x的任意性可得结论。
例如对于f(x)若t∈R均有f(2+t)=f(2-t)则f(x)图象关于x=2对称。若将条件改为f(1+t)=f(3-t)或f(t)=f(4-t)结论又如何呢?式中令t=1+m则得f(2+m)=f(2-m);第二式中令t=2+m,也得f(2+m)=f(2-m),所以仍有同样结论即关于x=2对称,由此我们得出以下的更一般的结论:
2、函数f(x)定义域为R,a、b为常数,若对任意x∈R均有f(a+x)=f(b-x),则其图象关于直线x=对称。
我们再来探讨以下问题:若将条件改为f(2+t)=-f(2-t)结论又如何呢?试想如果2改成0的话得f(t)=-f(t)这是奇函数,图象关于(0,0)成中心对称,现在是f(2+t)=-f(2-t)造成了平移,由此我们猜想,图象关于M(2,0)成中心对称。如图,取点A(2+t,f(2+t))其关于M(2,0)的对称点为A′(2-x,-f(2+x))
∵-f(2+X)=f(2-x)`A′的坐标为(2-x,f(2-x))显然在图象上
`图象关于M(2,0)成中心对称。
若将条件改为f(x)=-f(4-x)结论一样,推广至一般可得以下重要结论:
3、f(X)定义域为R,a、b为常数,若对任意x∈R均有f(a+x)=-f(b-x),则其图象关于点M(,0)成中心对称。
高考数学得分技巧
在三门主科中,只有数学最容易拉开距离,也最为同学、家长所关心。由于高考的特殊性,有些同学在考试开始的前5分钟就已乱了方寸,导致谁都不希望的结果。
1.做好前面5个小题。不要小看这几个小题,对稳定情绪,鼓舞士气有很大作用。有些同学就是由于前面个别小题做得不顺,影响整个考试情绪。而一旦前面发挥得好,会感到一路顺手,所向披靡。
2.认真审题。由于前面题目简单,想抓紧时间做完,以便腾出时间做后面的难题,结果把题目看错了,非常可惜。如2000年上海卷第1题就有不少同学犯这种低级错误。
3.确实遇到暂时不会做的题目,可以放一放,但很多同学做不到。担心前面就有不会做,后面肯定更难,从而心慌手抖,头脑一片空白。
要知道难易对大家都一样,你不会别人可能也不会。遇到暂时不会做的题目要敢于“合理放弃”,必要时你可以抬头看看,周围的人还在做这道难题,让他们浪费时间吧,我去做会做的题目。这种心理暗示会减少你的压力,等会做的做完了,状态很好,势如破竹,再回过来,有时一看就会了,这就能使你出色发挥。
4.对多数同学而言,两题的一问是“用不着”做的,如果前面不细心失误而把时间放攻难题上是得不偿失,犯了策略性错误。
5.心理素质不太好的同学,不一定要先看整个试卷,因为遇到难题会紧张。
高考数学复习方法
1.强化“三基”,夯实基础
所谓“三基”就是指基础知识、基本技能和基本的数学思想方法,从近几年的高考数学试题可见“出活题、考基础、考能力”仍是命题的主导思想。因而在复习时应注意加强“三基”题型的训练,不要急于求成,好高骛远,抓了高深的,丢了基本的。
新课标提出的数学学科的能力为:数学地提出问题、分析问题和解决问题的能力,数学探究能力,数学建模能力,数学交流能力,数学实践能力,数学思维能力。
考生复习基础知识要抓住本学科内各部分内容之间的联系与综合进行重新组合,对所学知识的认识形成一个较为完整的结构,达到“牵一发而动全身”的境界。
强化基本技能的训练要克服“眼高手低”现象,主要在速算、语言表达、解题、反思矫正等方面下功夫,尽量不丢或少丢一些不应该丢失的分数。
要注重基本数学思想方法在日常训练中的渗透,逐步提高学生的思维能力。
夯实解题基本功。高考复习的一个基本点是夯实解题基本功,而对这个问题的一个片面做法是,只抓解题的知识因素,其实,解题的效益取决于多种因素,其中最基本的有:解题的知识因素、能力因素、经验因素、非智力因素。学生在答卷中除了知识性错误之外,还有逻辑性错误和策略性错误和心理性错误。
数学高考历来重视运算能力,运算要熟练、准确,运算要简捷、迅速,运算要与推理相结合,要合理,并且在复习中要有意识地养成书写规范,表达准确的良好习惯。
2. 全面复习,系统整理知识,查漏补缺,优化知识结构
这是阶段复习中应该重点解决的问题。考生在这一过程应牢牢抓住以下几点:①概念的准确理解和实质性理解;②基本技能、基本方法的熟练和初步应用;③公式、定理的正逆推导运用,抓好相互的联系、变形和巧用。
经过全面复习这一阶段的努力,应使达到以下要求:①按大纲要求理解或掌握概念;②能理解或完成课本中的定理证明;③能熟练解答课本上的例题、习题;④能简要说出各单元题目类型及主要解法;⑤形成系统知识的合理结构和解题步骤的规范化。
这一阶段的直接效益是会考得优,其根本目的是为数学素质的提高准备物质基础。认真做好全面复习,才谈得上灵活性和综合性,才能适应高考踩分点多、覆盖面广的特点。
这一阶段复习的基本方法是从大到小、先粗后细,把教学中分割讲授的知识单点、知识片断组织合成知识链、知识体系、知识结构,使之各科内容综合化;基础知识体系化;基本方法类型化;解题步骤规范化。这当中,辅以图线、表格、口诀等已被证明是有益的,“习题化”的复习技术亦被证明是成功的,如,基本内容填空,基本概念判断,基本公式串联,基本运算选择。
3.加强对知识交汇点问题的训练
课本上每章的习题往往是为巩固本章内容而设置的,所用知识相对比较单一。复习中考生对知识交汇点的问题应适当加强训练,实际上就是训练学生的分析问题解决问题的能力。
要形成有效的知识网络。知识网络就是知识之间的基本联系,它反映知识发生的过程,知识所要回答的基本问题。构建知识网络的过程是一个把厚书(课本)读薄的过程;同时通过综合复习,还应该把薄书读厚,这个厚,应该比课本更充实,在课本的基础上加入一些更宏观的认识,更个性化的理解,更具作性的解题经验。
综合性的问题往往是可以分解为几个简单的问题来解决的,这几个简单问题有机的结合在一起。要解决这类考题,关键在于弄清题意,将之分解,找到突破口。由于课程内容的变化,使知识的交汇点出现了新动向,如从概率统计中产生应用型试题,从导数应用中与函数性质的联袂,从解析几何中产生与平面向量的联系、立体几何、三角函数、数列内容中渗透相关知识的综合考查(如三角与向量的结合、数列与不等式结合、概率与数列内容的结合)等。
猜你感兴趣:
1.高考数学知识点有多少
2.高考数学不等式知识点总结
3.高考数学答题规律和思路汇总
4.高考数学重点知识点汇总
5.高考数学不等式知识点归纳
6.高考数学答题模板总结
高考数学:求函数值域问题方法的总结
1. 与直线:Ax+By+C= 0平行的直线系方程是:Ax+By+m=0.( m?R, C≠m).这种东西主要是靠平时自己的经验,和连续的逻辑分析,简单说一下
如果平面外一条直线与此平面内的一条直线平行,那么该直线与此平面平行 “线面平行”根据含x的位置找出复合“原型”初等函数(包括幂函数,指数函数,对数函数等)
如,大体分为三部分,
然后根据x的多项式确定x不能取到的值(也就是找定义域)
根据目标函数的定义域和“原型”初等函数的定义域之间的关系,确定值域(主要就是定义域的交集,所对应的值域范围)
(这两步得连着反复处理)
【红圈】在分母上,所以取不到0 (即这部分定义域(-∞,0)U(0,+∞))
-> 【绿框】取不到1(即这部分的定义域(-∞,1)U(1,+∞))
->【ln绿框】取不到0(即这部分的值域(-∞,0)U(0,+∞))
->【蓝圈】取不到1(即这部分的定义域(-∞,1)U(1,+∞))
->【根号下蓝圈】取不到1,结合其本身的值域(0,+∞),所以值域是y>=0且y≠1
(因为不让发太多图,所以后面分析用文字代替了)
高考数学知识点的归纳总结
考生要深化对“三基”的理解、掌握和运用,高考试题改革的重点是:从“知识立意”向“能力立意”转变,考试大纲提出的数学学科能力要求是:能力是指思维能力、运算能力、空间想象能力以及实践能力和创新意识。高考数学对于大部分考生来说难度颇大,复习重点也不知道在哪。以下是由我为大家整理的“高考数学知识点的归纳总结”,仅供参考,欢迎大家阅读。
高考数学知识点总结
部分代数(2)负数的奇次幂是负数;负数的偶次幂是正数;
(一)和简易逻辑
1、解的意义及其表示方法,了解空集、全集、子集、交集、并集、补集的概念及其表示方法,了解符号各种跟相关的符号含义,并能运用这些符号表示与、元素与的关系。
2、了解充分条件、必要条件、充分必要条件的概念。
(二)函数
1、了解函数概念,会求一些常见函数的定义域。
2、了解函数的单调性和奇偶性的概念,会判断一些常见函数的单调性和奇偶性。
3、理解一次函数、反比例函数的概念,掌握它们的图像和性质,会求它们的解析式。
4、理解二次函数的概念,掌握它的图象和性质以及函数y=ax?+bx+c(a≠0)与
y=ax?(a≠0)的图象间的关系;会求二次函数的解析式及值或最小值,能运用二次函数的知识解决有关问题。
5、理解分数指数幂的概念,掌握有理指数幂的运算性质,掌握指数函数的概念、图象和性质。
6、理解对数的概念,掌握对数的运算性质,掌握对数函数的概念、图象和性质。
(三)不等式和不等式组
1、了解不等式的性质,会解一元一次不等式、一元一次不等式组各可化为一元一次不等式组的不等式,会解一元二次不等式。会表示不等式或不等式组的解集。
2、会解形如1ax+b1≥c和1ax+b1≤c的不等式。
(四)数列
1、了解数列及其通项、前n项和的概念。
2、理解等数列、等中项的概念,会灵活运用等数列的通项公式、前n项和公式解决有关问题。
3、理解等比数列、等比中项的概念,会运用等比数列的通项公式、前n项和公式解决有关问题。
(五)导数
1、理解导数的概念及其几何意义。
2、掌握函数y=c(c为常数),y=c(n∈N+)的导数公式,会求多项式函数的导数。
3、了解极大值、极小值、值、最小值的概念,并会用导数求多项式函数的单调区间、极大值、极小值及闭区间上的值和最小值。
4、会求有关曲线的切线议程,会用导数求简单实际问题的值与最小值。
第二部分三角函数
(一)三角函数及其有关概念
1、了解任意角的概念,理解象限角和终边相同的角的概念。
2、了解弧度的概念,会进行弧度与角度的换算。
3、理解任意三角函数的概念,了解三角函数在各象限的符号和特殊角的三角函数值。
(二)三角函数式的变换
1、掌握同角三角函数间的基本关系式、诱导公式,会运用它们进行计算、化简和证明。
2、掌握两角和、两角、二倍角的正弦、余弦、正切的公式,会用它们进行计算、化简和证明。
(三)三角函数的图象和性质
1、掌握正弦函数、余弦函数的图象和性质,会用这两个函数的性质(定义域、值域、周期性、奇偶性和单调性)解决有关问题。
2、了解正切函数的图象和性质。
3、会求函数y=Asin(ωx+Ф)的周期、值和最小值。
4、会由已知三角函数值求角,并会作符号arcsinx、arccosx,、arctanx表示。
(四)解三角形
2、掌握正弦定理和余弦定理,会用它们解斜三角形。
第三部分平面解析几何
(一)平面向量
1.理解向量的概念,掌握向量的几何表示,了解共线向量的概念。
2.掌握向量的加、减运算,掌握数乘向量的运算,了解两个向量共线的条件。
3.了解向量的分解定理。
4.掌握向量数量积运算,了解其几何意义和在处理长度、角度及垂直问题的应用4了解向量垂直的条件。
5.了解向量的直角坐标的概念,掌握向量的坐标运算。
6.掌握平面内两点间的距离公式、线段的中点公式和平移公式。
(二)直线
1.理解直线的倾斜角和斜率的概念,会求直线的斜率。
2.会求直线方程,会用直线方程解决有关问题。
3了解两条直线平行与垂直的条件以及点到直线的距离公式,会用它们解决有关问题。
(三)圆锥曲线
1.了解曲线和方程的关系,会求两条曲线的交点。
2.掌握圆的标准方程和一般方程式以及直线与圆的位置关系,能灵活运用它们解决有关问题。
3.理解椭圆、双曲线、抛物线的概念,掌握它们的标准方程和性质,会用它们解决有关问题。
第四部分概率与统计初步
(一)排列、组合
1.了解分类计数原理和分步计数原理。
2.了解排列、组合的意义,会用排列数、组合数的计算公式。
3.会解排列、组合的简单应用题。
(二)概率初步
1.了解随机及其概率的意义。
2.了解等可能性的概率的意义,会用计数方法和排列组合基本公式计算一些等可能性的概率。
3.了解互斥的意义,会用互斥的概率加法公式计算一些的概率。
4.了解相互的意义,会用相互的概率乘法公式计算一些的概率。
5.会计算在n次重复试验中恰好发生k次的概率。
拓展阅读:成考数学提分技巧
一、选择题(每题5分,17题,共85分)
1、一般来说前面几道题非常容易,可以把4个选项往题目里面套,看哪个符合,就是正确。
2、据统计:17题选择题,ABCD任意一个选项成为正确的次数为3-5次。那么同学们:
(1)一题都不会写,也一定要全部的答满,不能全部写一样的这样会一分都没有
(2)只会写1-2题,剩下的15题都写跟自己懂写题的不一样的选项,这样至少可以得20分。例如,会写的题一题选A,一题选B,那么不懂写的15题都写C或者D。
(3)懂写3题以上,看看自己懂写的中ABCD哪个选项出现的次数少,那么不懂写的题目都写那个选项,这样至少可以得30分以上。例如:懂写6题,分别是AAABBC,那不懂写的就都写D。因为A成为正确的次数一般不超过5题,现在已经写出三题选A了,从概率的角度来说A最多会再出现两次,而D则会出现3-5次。
二、填空题(每题4分,4题,共16分)
一般出现其中有一题是0,1,2的可能性很大,实在每题都不会写,就4题都写0或1或2,但写1的概率相对0、2会高一点。如果你时间充足的话,可以把0,1,2套进可能是整数的题目里面试试,这样运气好就能做对一两题。
三、解答题(49分)
完全不懂也不要放弃解答题的分数,解答题的特点是一层一层往下求解,最终求出一个。解答题的答题步骤。如:
①解:依题意可得~~~(题目中已知的数据写上去)
②公式~~~~~~~
③计算得~~~
④答:~~~~
高三数学理科知识点归纳
拓展阅读:高中数学选择题解题技巧仰望天空时,什么都比你高,你会自卑;俯视大地时,什么都比你低,你会自负;只有放宽视野,把天空和大地尽收眼底,才能在苍穹泛土之间找到你真正的位置。无须自卑,不要自负,坚持自信。努力学习,冲刺高考,我带来的 高三数学 理科知识点归纳,祝你金榜题名
高三数学理科知识点归纳1
一、求动点的轨迹方程的基本步骤
⒈建立适当的坐标系,设出动点M的坐标;
⒉写出点M的;
⒊列出方程=0;
⒋化简方程为最简形式;
⒌检验。
二、求动点的轨迹方程的常用 方法 :求轨迹方程的方法有多种,常用的有直译法、定义法、相关点法、参数法和交轨法等。
⒈直译法:直接将条件翻译成等式,整理化简后即得动点的轨迹方程,这种求轨迹方程的方法通常叫做直译法。
⒉定义法:如果能够确定动点的轨迹满足某种已知曲线的定义,则可利用曲线的定义写出方程,这种求轨迹方程的方法叫做定义法。
⒊相关点法:用动点Q的坐标x,y表示相关点P的坐标x0、y0,然后代入点P的坐标(x0,y0)所满足的曲线方程,整理化简便得到动点Q轨迹方程,这种求轨迹方程的方法叫做相关点法。
⒋参数法:当动点坐标x、y之间的直接关系难以找到时,往往先寻找x、y与某一变数t的关系,得再消去参变数t,得到方程,即为动点的轨迹方程,这种求轨迹方程的方法叫做参数法。
⒌交轨法:将两动曲线方程中的参数消去,得到不含参数的方程,即为两动曲线交点的轨迹方程,这种求轨迹方程的方法叫做交轨法。
_直译法:求动点轨迹方程的一般步骤
①建系——建立适当的坐标系;
②设点——设轨迹上的任一点P(x,y);
③列式——列出动点p所满足的关系式;
④代换——依条件的特点,选用距离公式、斜率公式等将其转化为关于X,Y的方程式,30.三角函数的定义及单位圆内的三角函数线(正弦线、余弦线、正切线)的定义你知道吗?并化简;
⑤证明——证明所求方程即为符合条件的动点轨迹方程。
高三数学理科知识点归纳2
1.函数的奇偶性
(1)若f(x)是偶函数,那么f(x)=f(-x);
(2)若f(x)是奇函数,0在其定义域内,则f(0)=0(可用于求参数);
(3)判断函数奇偶性可用定义的等价形式:f(x)±f(-x)=0或(f(x)≠0);
(4)若所给函数的解析式较为复杂,应先化简,再判断其奇偶性;
(5)奇函数在对称的单调区间内有相同的单调性;偶函数在对称的单调区间内有相反的单调性;
2.复合函数的有关问题
(1)复合函数定义域求法:若已知的定义域为[a,b],其复合函数f[g(x)]的定义域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定义域为[a,b],求f(x)的定义域,相当于x∈[a,b]时,求g(x)的值域(即f(x)的定义域);研究函数的问题一定要注意定义域优先的原则。
3.函数图像(或方程曲线的对称性)
(1)证明函数图像的对称性,即证明图像上任意点关于对称中心(对称轴)的对称点仍在图像上;
(2)证明图像C1与C2的对称性,即证明C1上任意点关于对称中心(对称轴)的对称点仍在C2上,反之亦然;
(3)曲线C1:f(x,y)=0,关于y=x+a(y=-x+a)的对称曲线C2的方程为f(y-a,x+a)=0(或f(-y+a,-x+a)=0);
(4)曲线C1:f(x,y)=0关于点(a,b)的对称曲线C2方程为:f(2a-x,2b-y)=0;
(5)若函数y=f(x)对x∈R时,f(a+x)=f(a-x)恒成立,则y=f(x)图像关于直线x=a对称;
(6)函数y=f(x-a)与y=f(b-x)的图像关于直线x=对称;
4.函数的周期性
(1)y=f(x)对x∈R时,f(x+a)=f(x-a)或f(x-2a)=f(x)(a>0)恒成立,则y=f(x)是周期为2a的周期函数;
(2)若y=f(x)是偶函数,其图像又关于直线x=a对称,则f(x)是周期为2︱a︱的周期函数;
(3)若y=f(x)奇函数,其图像又关于直线x=a对称,则f(x)是周期为4︱a︱的周期函数;
(4)若y=f(x)关于点(a,0),(b,0)对称,则f(x)是周期为2的周期函数;
(5)y=f(x)的图象关于直线x=a,x=b(a≠b)对称,则函数y=f(x)是周期为2的周期函数;
(6)y=f(x)对x∈R时,f(x+a)=-f(x)(或f(x+a)=,则y=f(x)是周期为2的周期函数;
5.方程k=f(x)有解k∈D(D为f(x)的值域);
6.a≥f(x)恒成立a≥[f(x)]max,;a≤f(x)恒成立a≤[f(x)]min;
7.(1)(a>0,a≠1,b>0,n∈R+);
(2)logaN=(a>0,a≠1,b>0,b≠1);
(4)alogaN=N(a>0,a≠1,N>0);
8.判断对应是否为映射时,抓住两点:
(1)A中元素必须都有象且;
(2)B中元素不一定都有原象,并且A中不同元素在B中可以有相同的象;
9.能熟练地用定义证明函数的单调性,求反函数,判断函数的奇偶性。
10.对于反函数,应掌握以下一些结论:
(1)定义域上的单调函数必有反函数;
(2)奇函数的反函数也是奇函数;
(3)定义域为非单元素集的偶函数不存在反函数;
(4)周期函数不存在反函数;
(5)互为反函数的两个函数具有相同的单调性;
(6)y=f(x)与y=f-1(x)互为反函数,设f(x)的定义域为A,值域为B,则有f[f--1(x)]=x(x∈B),f--1[f(x)]=x(x∈A);
11.处理二次函数的问题勿忘数形结合
二次函数在闭区间上必有最值,求最值问题用“两看法”:一看开口方向;二看对称轴与所给区间的相对位置关系;
12.依据单调性
利用一次函数在区间上的保号性可解决求一类参数的范围问题;
13.恒成立问题的处理方法
(1)分离参数法;
(2)转化为一元二次方程的根的分布列不等式(组)求解;
高三数学理科知识点归纳3
1.进行的交、并、补运算时,不要忘了全集和空集的特殊情况,不要忘记了借助数轴和文氏图进行求解.
2.在应用条件时,易A忽略是空集的情况
3.你会用补集的思想解决有关问题吗?
4.简单命题与复合命题有什么区别?四种命题之间的相互关系是什么?如何判断充分与必要条件?
5.你知道“否命题”与“命题的否定形式”的区别.
6.求解与函数有关的问题易忽略定义域优先的原则.
7.判断函数奇偶性时,易忽略检验函数定义域是否关于原点对称.
8.求一个函数的解析式和一个函数的反函数时,易忽略标注该函数的定义域.
9.原函数在区间[-a,a]上单调递增,则一定存在反函数,且反函数也单调递增;但一个函数存在反函数,此函数不一定单调
10.你熟练地掌握了函数单调性的证明方法吗?定义法(取值,作,判正负)和导数法
11.求函数单调性时,易错误地在多个单调区间之间添加符号“∪”和“或”;单调区间不能用或不等式表示.
12.求函数的值域必须先求函数的定义域。
13.如何应用函数的单调性与奇偶性解题?①比较函数值的大小;②解抽象函数不等式;③求参数的范围(恒成立问题).这几种基本应用你掌握了吗?
14.解对数函数问题时,你注意到真数与底数的限制条件了吗?
(真数大于零,底数大于零且不等于1)字母底数还需讨论
15.三个二次(哪三个二次?)的关系及应用掌握了吗?如何利用二次函数求最值?
16.用换元法解题时易忽略换元前后的等价性,易忽略参数的范围。
17.“实系数一元二次方程有实数解”转化时,你是否注意到:当时,“方程有解”不能转化为。若原题中没有指出是二次方程,二次函数或二次不等式,你是否考虑到二次项系数可能为的零的情形?
18.利用均值不等式求最值时,你是否注意到:“一正;二定;三等”.
19.不等式的解法及其几何意义是什么?
20.解分式不等式应注意什么问题?用“根轴法”解整式(分式)不等式的注意事项是什么?
21.解含参数不等式的通法是“定义域为前提,函数的单调性为基础,分类讨论是关键”,注意解完之后要写上:“综上,原不等式的解集是……”.
22.在求不等式的解集、定义域及值域时,其结果一定要用或区间表示;不能用不等式表示.
23.两个不等式相乘时,必须注意同向同正时才能相乘,即同向同正可乘;同时要注意“同号可倒”即a>b>0,a<0.
24.解决一些等比数列的前项和问题,你注意到要对公比及两种情况进行讨论了吗?
25.在“已知,求”的问题中,你在利用公式时注意到了吗?(时,应有)需要验证,有些题目通项是分段函数。
26.你知道存在的条件吗?(你理解数列、有穷数列、无穷数列的概念吗?你知道无穷数列的前项和与所有项的和的不同吗?什么样的无穷等比数列的所有项的和必定存在?
27.数列单调性问题能否等同于对应函数的单调性问题?(数列是特殊函数,但其定义域中的值不是连续的。)
28.应用数学归纳法一要注意步骤齐全,二要注意从到过程中,先设时成立,再结合一些数学方法用来证明时也成立。
29.正角、负角、零角、象限角的概念你清楚吗?,若角的终边在坐标轴上,那它归哪个象限呢?你知道锐角与象限的角;终边相同的角和相等的角的区别吗?
31.在解三角问题时,你注意到正切函数、余切函数的定义域了吗?你注意到正弦函数、余弦函数的有界性了吗?
32.你还记得三角化简的通性通法吗?(切割化弦、降幂公式、用三角公式转化出现特殊角.异角化同角,异名化同名,高次化低次)
33.反正弦、反余弦、反正切函数的取值范围分别是
34.你还记得某些特殊角的三角函数值吗?
35.掌握正弦函数、余弦函数及正切函数的图象和性质.你会写三角函数的单调区间吗?会写简单的三角不等式的解集吗?(要注意数形结合与书写规范,可别忘了),你是否清楚函数的图象可以由函数经过怎样的变换得到吗?
36.函数的图象的平移,方程的平移以及点的平移公式易混:
(1)函数的图象的平移为“左+右-,上+下-”;如函数的图象左移2个单位且下移3个单位得到的图象的解析式为y=2(x+2)+4-3,即y=2x+5.
(2)方程表示的图形的平移为“左+右-,上-下+”;如直线左移2个个单位且下移3个单位得到的图象的解析式为2(x+2)-(y+3)+4=0,即y=2x+5.
(3)点的平移公式:点P(x,y)按向量平移到点P(x,y),则x=x+hy=y+k.
38.形如的周期都是,但的周期为。
39.正弦定理时易忘比值还等于2R。
高三数学理科知识点归纳相关 文章 :
★ 高三数学知识点梳理汇总
★ 高考数学知识点归纳整理
★ 高三数学重点知识总结大全
★ 高三数学知识点总结归纳
★ 高三数学知识点总结及数学学习方法
★ 高考数学知识点整理
★ 高三数学知识点考点大全
★ 高考数学知识点归纳总结
安徽高考数学重点知识总结有谁知道吗?
2、及时了解、掌握常用的数学思想和方法,学好高中数学,需要我们从数学思想与方法高度来掌握它。中学数学学习要重点掌握的的数学思想有以上几个:与对应思想,分类讨论思想,数形结合思想,运动思想,转化思想,变换思想。:高考数学中有函数、数列、三角函数、平面向量、不等式、立体几何等九大章节。
主要是考函数和导数,这是我们整个高中阶段里最核心的板块,在这个板块里,重点考察两个方面:个函数的性质,包括函数的单调性、奇偶性;第二是函数的解答题,重点考察的是二次函数和高次函数,分函数和它的一些分布问题,但是这个分布重点还包含两个分析就是二次方程的分布的问题,这是个板块。
第二:平面向量和三角函数。
重点考察三个方面:一个是划减与求值,,重点掌握公式,重点掌握五组基本公式。第二,是三角函数的图像和性质,这里重点掌握正弦函数和余弦函数的性质,第三,正弦定理和余弦定理来解三角形。难度比较小。
第三:数列。
数列这个板块,重点考两个方面:一个通项;一个是求和。
第四:空间向量和-> 【1/红圈】取不到0(即这部分的值域(-∞,0)U(0,+∞))立体几何。
在里面重点考察两个方面:一个是证明;一个是计算。
第五:概率和统计。
这一板块主要是属于数学应用问题的范畴,当然应该掌握下面几个方面,……等可能的概率,第二………,第三是,还有重复发生的概率。
第六:解析几何。
这是我们比较头疼的问题,是整个试卷里难度比较大,计算量的题,当然这一类题,我总结下面五类常考的题型,包括类所讲的直线和曲线的位置关系,这是考试最多的内容。考生应该掌握它的通法,第二类我们所讲的动点问题,第三类是弦长问题,第四类是对称问题,这也是2008年高考已经考过的一点,第五类重点问题,这类题时往往觉得有思路,但是没有,当然这里我相等的是,这道题尽管计算量很大,但是造成计算量大的原因,往往有这个原因,我们所选方法不是很恰当,因此,在这一章里我们要掌握比较好的算法,来提高我们做题的准确度,这是我们所讲的第六大板块。
第七:押轴题。
考生在备考复习时,应该重点不等式计算的方法,虽然说难度比较大,我建议考生,采取分部得分整个试卷不要留空白。这是高考所考的七大板块核心的考点
要详细知识点的,可以追问 我这有
高中数学知识点归纳总结
圆台侧面积S=1/2(c+c')l=pi(R+r)l球的表面积S=4pixr2想要了解高中数学知识点的小伙伴,赶紧来瞧瞧吧!下面由我为你精心准备了“高中数学知识点归纳总结”,本文仅供参考,持续关注本站将可以持续获取更多资讯!
高中数学知识点归纳总结
1.等数列的定义
如果一个数列从第2项起,每一项与它的前一项的等于同一个常数,那么这个数列就叫做等数列,这个常数叫做等数列的公,通常用字母d表示。
2.等数列的通项公式
若等数列{an}的首项是a1,公是d,则其通项公式为an=a1+(n-1)d。
3.等中项
如果A=(a+b)/2,那么A叫做a与b的等中项。
4.等数列的常用性质
(1)通项公式的推广:an=am+(n-m)d(n,m∈N_)。
(2)若{an}为等数列,且m+n=p+q,则am+an=ap+aq(m,n,p,q∈N_)。
(3)若{an}是等数列,公为d,则ak,ak+m,ak+2m,…(k,m∈N_)是公为md的等数列。
(4)数列Sm,S2m-Sm,S3m-S2m,…也是等数列。
(5)S2n-1=(2n-1)an。
(6)若n为偶数,则S偶-S奇=nd/2;若n为奇数,则S奇-S偶=a中(中间项)。
注意:
一个推导
利用倒序相加法推导等数列的前n项和公式:
Sn=a1+a2+a3+…+an,①
Sn=an+an-1+…+a1,②
①+②得:Sn=n(a1+an)/2。
两个技巧
已知三个或四个数组成等数列的一类问题,要善于设元。
(1)若奇数个数成等数列且和为定值时,可设为…,a-2d,a-d,a,a+d,a+2d,…。
(2)若偶数个数成等数列且和为定值时,可设为…,a-3d,a-d,a+d,a+3d,…,其余各项再依据等数列的定义进行对称设元。
四种方法
等数列的判断方法
(1)定义法:对于n≥2的任意自然数,验证an-an-1为同一常数;
(2)等中项法:验证2an-1=an+an-2(n≥3,n∈N_)都成立;
(3)通项公式法:验证an=pn+q;
(4)前n项和公式法:验证Sn=An2+Bn。
注:后两种方法只能用来判断是否为等数列,而不能用来证明等数列。
1、直接解题法(直接法)
直接从题设条件出发,运用有关概念、性质、定理、法则和公式等知识,通过严密的推理和准确的运算,从而得出正确的结论,然后对照题目所给出的选择支“对号入座”作出相应的选择。涉及概念、性质的辨析或运算较简单的题目常用直接法。直接法是解答选择题最常用的基本方法,低档选择题可用此法迅速求解。直接法适用的范围很广,只要运算正确必能得出正确的。提高直接法解选择题的能力,准确地把握中档题目的“个性”,用简便方法巧解选择题,是建立在扎实掌握“三基”的基础上,否则一味求快则会快中出错。
2、特殊值解题
正确的选择对象,在题设普遍条件下都成立的情况下,用特殊值(取得越简单越好)进行探求,从而清晰、快捷地得到正确的,即通过对特殊情况的研究来判断一般规律,是解答本类选择题的策略。近几年高考选择题中可用或结合特例法解答的约占30%左右。通过取适合条件的特殊值、特殊图形、特殊位置等进行分析,往往能简缩思维过程、降低难度而迅速地解。
巧妙地利用割补法,可以将不规则的图形转化为规则的图形,这样可以使问题得到简化,从而缩短解题长度。对于一些具有几何背景的数学问题,如能构造出与之相应的图形进行分析,往往能在数形结合、以形助数中获得形象直观的解法。
4、极限法
这是高中选修部分,不过用在解题会很快。极限思想是一种基本而重要的数学思想。当一个变量无限接近一个定量,则变量可看作此定量。对于某些选择题,若能恰当运用极限思想思考,则往往可使过程简单明快。用极限法是解选择题的一种有效方法。它根据题干及选择支的特征,考虑极端情形,有助于缩小选择面,迅速找到。
高考数学复习技巧有哪些
1、重点知识,落实到位
函数、导数、数列、向量、不等式、直线与平面的位置关系、直线与圆锥曲线、概率、数学思想方法等,这些既是高中数学教学的重要内容,又是高考的重点,而且常考常新,经久不衰。因此,在复习备考中,一定要围绕上述重点内容作重点复习,保证复习时间、狠下功夫、下足力气、练习到位、反思到位、效果到位。并将这些板块知识有机结合,形成知识链、方法群。如聚集立体几何与其他知识的整合,就包括它与方程、函数、三角、向量、排列组合、概率、解析几何等的整合,善于将已经完成过的题目清理,整理出的解题通法和一般的策略,“在知识网络交汇点设计试题”是近几年高考命题改革反复强调的重要理念之一,在复习备考的过程中,要打破数学章节界限,把握好知识间的纵横联系与融合,形成有序的网络化知识体系。
2、新增内容,注重辐射
新增内容是新课程的活力和精髓,是近、现代数学在高中的渗透,且占整个高中教学内容的40%左右,而高考这部分内容的分值,远远超出其在教学中所占的比例。试题加大了对新教材中增加的线性规划、向量、概率、导数等知识的考查力度,对新增内容一一作了考查,分值达50多分,并保持了将概率内容作为应用题的格局。因此,复习中要强化新增知识的学习,特别是新增数学知识与其它知识的结合。向量在解题中的作用明显加强,用导数做工具研究函数的单调性和证明不等式问题,导数亦成为高考解答题目的必考内容之一。
3、思想方法,重在体验
数学思想方法作为数学的精髓,历来是高考数学考查的重中之重。“突出方法永远是高考试题的特点”,这就要求我们在复习备考中应重视“通法”,重点抓方法渗透。
首先,我们应充分地重视数学思想方法的总结提炼,尽管数学思想方法的掌握是一个潜移默化的过程,但是我们认为,遵循“揭示—渗透”的原则,在复习备考中采取一些措施,对于数学思想方法以及数学基本方法的掌握是可以起到促进作用的,例如,在复习一些重点知识时,可以通过重新揭示其发生过程,适时渗透数学思想方法。
其次,要真正地重视“通法”,切实淡化“特技”,我们不应过分地追求特殊方法和特殊技巧,不必将力气花在钻偏题、怪题和过于繁琐、运算量太大的题目上,而应将主要精力放在基本方法的灵活运用和提高学生的思维层次上,另外,在复习中,还应充分重视解题回顾,借助于解题之后的反思、总结、引申和提炼来深化知识的理解和方法的领悟。
4、综合能力,强化训练
近年来高考数学试题,在加强基础知识考查的同时,突出能力立意。以能力立意,就是从问题入手,把握学科的整体意义,用统一的数学观点组织材料,对知识的考查倾向于理解和应用,特别是知识的综合性和灵活运用,这就要求我们在复习过程中,应打破数学内部学科界限,加强综合解题能力的训练;注重培养学生收集处理信息的能力、语言文字的表达能力及建模能力;力求打破能力学科化的界限,用数学的眼光去分析生产和生活及其他学科的一些具体问题。
5、规范解题,正本清(2)复合函数的单调性由“同增异减”判定;源
(2)思路探求情境化,通过对问题情境的典型性、层次性、综合性分析,去寻找解法的情境;
(3)思维过程显性化,“听得懂,不会做”是没有真正学会思考,解题时要追问:怎样想,为什么要这样想?特别是理清怎样做,为什么要这样做;
(4)解题方法多样化、格式书写规范化、重要结论工具化、解后反思制度化。
数学高考选择题蒙题技巧
数学高考选择(1)认真审题自觉化,通过反复读题、对问题重新表述、对数学语言加以表征等加工策略,寻找解题突破口;题蒙题技巧如下:
1、每一个人如果说想要增加自己的正确率的话,肯定是要了解基础知识的。如3、数形结合法或者割补法(解析几何常用方法):果说自己一点知识都不了解就瞎蒙的话,那么正确率是非常非常低的,如果说在高考理综选择题做题的时候发现有一些不太确定,但是又不知道该选哪一个。
2、这个时候首先就是要排除错误的选项,因为有一些选项仔细读的话会发现和题干的意思是相违背的,所以说就可以通过排除错误的选项,然后在这其中选择一个最合理的。其实有时候没有必要完整的把自己的计算过程列出来,只需要挑出一些特殊的数据。
3、然后把特殊的数据放里面看看能不能成立,这样的话就可以选择正确的那一个了,所以说还是要用特殊法来进行验证。这样的话就能够让自己更好的蒙题,如果说实在是感觉不太对的话,那么就可以先放一放做其他的题目。
4、其实在走进高考考场之前,一定要给自己做好心态的调整,这样的话才能够让自己的做题心态变得更好。而且在高考到考场之上,其实很多人是会感觉到比较的紧张的。要注意在考试之前先深呼吸,告诉自己调整心态,然后放松,另外的话就是老师一般情况下都是不会打扰学生的。
5、凭感觉蒙题用的最多的应该就是英语了,英语中常见的一个蒙题方法,相信不少同学应该都知道:三长一短选最短,三短一长选最长,两长两短就选B,同长同短就选A,长短不一选择D,参不齐C。
另外一般考试的时候选项都是分布比较均匀的,全部出现A、全部出现B的时候并不多见,有时候看着感觉自己能念出来,这个时候你就得到了感觉蒙题的精髓。
求高三数学知识点总结
(3)logab的符号由口诀“同正异负”记忆;方法/步骤1、先看笔记后做作业。有的高中学生感到。老师讲过的,自己已经听得明明白白了。但是,为什么自己一做题就困难重重了呢?其原因在于,学生对教师所讲的内容的理解,还没能达到教师所要求的层次。因此,每天在做作业之前,一定要把课本的有关内容和当天的课堂笔记先看一看。能否坚持如此,常常是好学生与学生的区别。尤其练习题不太配套时,作业中往往没有老师刚刚讲过的题目类型,因此不能对比消化。如果自己又不注意对此落实,天长日久,就会造成极大损失。2、做题之后加强反思。学生一定要明确,现在正坐着的题,一定不是考试的题目。而是要运用现在正做着的题目的解题思路与方法。因此,要把自己做过的每道题加以反思。总结一下自己的收获。要总结出,这是一道什么内容的题,用的是什么方法。做到知识成片,问题成串,日久天长,构建起一个内容与方法的科学的网络系统。3、主动复习总结提高。进行章节总结是非常重要的。初中时是教师替学生做总结,做得细致,深刻,完整。高中是自己给自己做总结,老师不但不给做,而且是讲到哪,考到哪,不留复习时间,也没有明确指出做总结的时间。4、积累资料随时整理。要注意积累复习资料。把课堂笔记,练习,单元测试,各种试卷,都分门别类按时间顺序整理好。每读一次,就在上面标记出自己下次阅读时的重点内容。这样,复习资料才能越读越精,一目了然。5、精挑慎选课外读物。初中学生学数学,如果不注意看课外读物,一般地说,不会有什么影响。高中则不大相同。高中数学特例,中点坐标公式;重要结论,三角形重心坐标公式。考的是学生解决新题的能力。作为一名高中生,如果只是围着自己的老师转,不论老师的水平有多高,必然都会存在着很大的局限性。因此,要想学好数学,必须打开一扇门,看看外面的世界。当然,也不要自立门户,另起炉灶。一旦脱离校内教学和自己的老师的教学体系,也必将事半功倍。6、配合老师主动学习。高中学生学习主动性要强。小学生,常常是完成作业就尽情的欢乐。初中生基本也是如此,听话的孩子就能学习好。高中则不然,作业虽多,但是只知道做作业就不够;老师的话也不少,但是谁该干些什么了,老师并不一一具体指明,因此,高中学生必须提高自己的学习主动性。准备向将来的大学生的学习方法过渡。
高三文科数学常考知识点整理归纳
数学已成为许多及地区的 教育 范畴中的一部分。它应用于不同领域中,包括科学、工程、医学、经济学和金融学等。这次我给大家整理了高三文科数学常考知识点,供大家阅读参考。
高三文科数学常考知识点
一、导数的应用
1.用导数研究函数的最值
确定函数在其确定的定义域内可导(通常为开区间),求出导函数在定义域内的零点,研究在零点左、右的函数的单调性,若左增,右减,则在该零点处,函数去极大值;若左边减少,右边增加,则该零点处函数取极小值。学习了如何用导数研究函数的最值之后,可以做一个有关导数和函数的综合题来检验下学习成果。
2.生活中常见4. 过直线l1、l2交点的直线系方程:(A1x+B1y+C1)+λ( A2x+B2y+C2)=0 (λ?R) 注:该直线系不含l2.的函数优化问题
1)费用、成本最省问题
2)利润、收益问题
3)面积、体积最(大)问题
二、推理37.在三角函数中求一个角时,注意考虑两方面了吗?(先求出某一个三角函数值,再判定角的范围)与证明
1.归纳推理:归纳推理是 高二数学 的一个重点内容,其难点就是有部分结论得到一般结论,的 方法 是充分考虑部分结论提供的信息,从中发现一般规律;类比推理的难点是发现两类对象的相似特征,由其中一类对象的特征得出另一类对象的特征,的方法是利用已经掌握的数学知识,分析两类对象之间的关系,通过两类对象已知的相似特征得出所需要的相似特征。
2.类比推理:由两类对象具有某些类似特征和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理称为类比推理,简而言之,类比推理是由特殊到特殊的推理。
三、不等式
对于含有参数的一元二次不等式解的讨论
1)二次项系数:如果二次项系数含有字母,要分二次项系数是正数、零和负数三种情况进行讨论。
2)不等式对应方程的根:如果一元二次不等式对应的方程的根能够通过因式分解的方法求出来,则根据这两个根的大小进行分类讨论,这时,两个根的大小关系就是分类标准,如果一元二次不等式对应的方程根不能通过因式分解的方法求出来,则根据方程的判别式进行分类讨论。通过不等式练习题能够帮助你更加熟练的运用不等式的知识点,例如用放缩法证明不等式这种技巧以及利用均值不等式求最值的九种技巧这样的解题思路需要再做题的过程中 总结 出来。
高三文科数学知识点
对应复平面上点,原点与它连成箭。箭杆与X轴正向,所成便是辐角度。
箭杆的长即是模,常将数形来结合。代数几何三角式,相互转化试一试。
代数运算的实质,有i多项式运算。i的正整数次慕,四个数值周期现。
一些重要的结论,熟记巧用得结果。虚实互化本领大,复数相等来转化。
利用方程思想解,注意整体代换术。几何运算图上看,加法平行四边形,
三角形式的运算,须将辐角和模辨。利用棣莫弗公式,乘方开方极方便。
辐角运算很奇特,和是由积商得。四条性质离不得,相等和模与共轭,
两个不会为实数,比较大小要不得。复数实数很密切,须注意本质区别。
高三数学 知识点
一、、简易逻辑(14课时,8个)1.;2.子集;3.补集;4.交集;5.并集;6.逻辑连结词;7.四种命题;8.充要条件.
二、函数(30课时,12个)1.映射;2.函数;3.函数的单调性;4.反函数;5.互为反函数的函数图象间的关系;6.指数概念的扩充;7.有理指数幂的运算;8.指数函数;9.对数;10.对数的运算性质;11.对数函数.12.函数的应用举例.
三、数列(12课时,5个)1.数列;2.等数列及其通项公式;3.等数列前n项和公式;4.等比数列及其通顶公式;5.等比数列前n项和公式.
四、三角函数(46课时17个)1.角的概念的推广;2.弧度制;3.任意角的三角函数;4,单位圆中的三角函数线;5.同角三角函数的基本关系式;6.正弦、余弦的诱导公式’7.两角和与的正弦、余弦、正切;8.二倍角的正弦、余弦、正切;9.正弦函数、余弦函数的图象和性质;10.周期函数;11.函数的奇偶性;12.函数的图象;13.正切函数的图象和性质;14.已知三角函数值求角;15.正弦定理;16余弦定理;17斜三角形解法举例.
五、平面向量(12课时,8个)1.向量2.向量的加法与减法3.实数与向量的积;4.平面向量的坐标表示;5.线段的定比分点;6.平面向量的数量积;7.平面两点间的距离;8.平移.
六、不等式(22课时,5个)1.不等式;2.不等式的基本性质;3.不等式的证明;4.不等式的解法;5.含的不等式.
七、直线和圆的方程(22课时,12个)1.直线的倾斜角和斜率;2.直线方程的点斜式和两点式;3.直线方程的一般式;4.两条直线平行与垂直的条件;5.两条直线的交角;6.点到直线的距离;7.用二元一次不等式表示平面区域;8.简单线性规划问题.9.曲线与方程的概念;10.由已知条件列出曲线方程;11.圆的标准方程和一般方程;12.圆的参数方程.
八、圆锥曲线(18课时,7个)1椭圆及其标准方程;2.椭圆的简单几何性质;3.椭圆的参数方程;4.双曲线及其标准方程;5.双曲线的简单几何性质;6.抛物线及其标准方程;7.抛物线的简单几何性质.九、(B)直线、平面、简单何体(36课时,28个)1.平面及基本性质;2.平面图形直观图的画法;3.平面直线;4.直线和平面平行的判定与性质;5,直线和平面垂直的判与性质;6.三垂线定理及其逆定理;7.两个平面的位置关系;8.空间向量及其加法、减法与数乘;9.空间向量的坐标表示;10.空间向量的数量积;11.直线的方向向量;12.异面直线所成的角;13.异面直线的公垂线;14异面直线的距离;15.直线和平面垂直的性质;16.平面的法向量;17.点到平面的距离;18.直线和平面所成的角;19.向量在平面内的射影;20.平面与平面平行的性质;21.平行平面间的距离;22.二面角及其平面角;23.两个平面垂直的判定和性质;24.多面体;25.棱柱;26.棱锥;27.正多面体;28.球.
十、排列、组合、二项式定理(18课时,8个)1.分类计数原理与分步计数原理.2.排列;3.排列数公式’4.组合;5.组合数公式;6.组合数的两个性质;7.二项式定理;8.二项展开式的性质.
十一、概率(12课时,5个)1.随机的概率;2.等可能的概率;3.互斥有一个发生的概率;4.相互同时发生的概率;5.重复试验.选修Ⅱ(24个)
十二、概率与统计(14课时,6个)1.离散型随机变量的分布列;2.离散型随机变量的期望值和方;3.抽样方法;4.总体分布的估计;5.正态分布;6.线性回归.
十三、极限(12课时,6个)1.数学归纳法;2.数学归纳法应用举例;3.数列的极限;4.函数的极限;5.极限的四则运算;6.函数的连续性.
十四、导数(18课时,8个)1.导数的概念;2.导数的几何意义;3.几种常见函数的导数;4.两个函数的和、、积、商的导数;5.复合函数的导数;6.基本导数公式;7.利用导数研究函数的单调性和极值;8函数的值和最小值.
十五、复数(4课时,4个)1.复数的概念;2.复数的加法和减法;3.复数的乘法和除法补充高中数学有130个知识点,从前一份试卷要考查90个知识点,覆盖率达70%左右,而且把这一项作为衡量试卷成功与否的标准之一.这一传统近年被打破,取而代之的是关注思维,突出能力,重视思想方法和思维能力的考查.现在的我们学数学比前人幸福啊!!相信对你的学习会有帮助的,祝你成功!补充一试全国高中数学联赛的一试竞赛大纲,完全按照全日制中学《数学教学大纲》中所规定的教学要求和内容,即高考所规定的知识范围和方法,在方法的要求上略有提高,其中概率和微积分初步不考。二试1、平面几何基本要求:掌握初中数学竞赛大纲所确定的所有内容。补充要求:面积和面积方法。几个重要定理:梅涅劳斯定理、塞瓦定理、托勒密定理、西姆松定理。几个重要的极值:到三角形三顶点距离之和最小的点--费马点。到三角形三顶点距离的平方和最小的点,重心。三角形内到三边距离之积的点,重心。几何不等式。简单的等周问题。了解下述定理:在周长一定的n边形的中,正n边形的面积。在周长一定的简单闭曲线的中,圆的面积。在面积一定的n边形的中,正n边形的周长最小。在面积一定的简单闭曲线的中,圆的周长最小。几何中的运动:反射、平移、旋转。复数方法、向量方法。平面凸集、凸包及应用。补充第二数学归纳法。递归,一阶、二阶递归,特征方程法。函数迭代,求n次迭代,简单的函数方程。n个变元的平均不等式,柯西不等式,排序不等式及应用。复数的指数形式,欧拉公式,棣莫佛定理,单位根,单位根的应用。圆排列,有重复的排列与组合,简单的组合恒等式。一元n次方程(多项式)根的个数,根与系数的关系,实系数方程虚根成对定理。简单的初等数论问题,除初中大纲中所包括的内容外,还应包括无穷递降法,同余,欧几里得除法,非负最小完全剩余类,高斯函数,费马小定理,欧拉函数,孙子定理,格点及其性质。3、立体几何多面角,多面角的性质。三面角、直三面角的基本性质。正多面体,欧拉定理。体积证法。截面,会作截面、表面展开图。4、平面解析几何直线的法线式,直线的极坐标方程,直线束及其应用。二元一次不等式表示的区域。三角形的面积公式。圆锥曲线的切线和法线。圆的幂和根轴。
高三数学常考知识点
导数:导数的意义-导数公式-导数应用(极值最值问题、曲线切线问题)
1、导数的定义:在点处的导数记作.
2.导数的几何物理意义:曲线在点处切线的斜率
①k=f/(x0)表示过曲线y=f(x)上P(x0,f(x0))切线斜率。V=s/(t)表示即时速度。a=v/(t)表示加速度。
3.常见函数的导数公式:①;②;③;
⑤;⑥;⑦;⑧。
4.导数的四则运算法则:
5.导数的应用:
(1)利用导数判断函数的单调性:设函数在某个区间内可导,如果,那么为增函数;如果,那么为减函数;
注意:如果已知为减函数求字母取值范围,那么不等式恒成立。
(2)求极值的步骤:
①求导数;
②求方程的根;
③列表:检验在方程根的左右的符号,如果左正右负,那么函数在这个根处取得极大值;如果左负右正,那么函数在这个根处取得极小值;
(3)求可导函数值与最小值的步骤:
ⅰ求的根;ⅱ把根与区间端点函数值比较,的为值,最小的是最小值。
数学的 学习方法
1、养成良好的学习数学习惯。 建立良好的学习数学习惯,会使自己学习感到有序而轻松。高中数学的良好习惯应是:多质疑、勤思考、好动手、重归纳、注意应用。学生在学习数学的过程中,要把教师所传授的知识翻译成为自己的特殊语言,并记忆在自己的脑海中。良好的学习数学习惯包括课前自学、专心上课、及时复习、作业、解决疑难、系统小结和课外学习几个方面。
3、逐步形成 “以我为主”的学习模式 数学不是靠老师教会的,而是在老师的下,靠自己主动的思维活动去获取的。学习数学就要积极主动地参与学习过程,养成实事求是的科学态度,思考、勇于探索的创新精神。
4、记数学笔记,特别是对概念理解的不同侧面和数学规律,教师在课堂中拓展的课外知识。记录下来本章你觉得最有价值的思想方法或例题,以及你还存在的未解决的问题,以便今后将其补上。
高三文科数学常考知识点整理归纳相关 文章 :
★ 高三文科数学重点公式
★ 高三数学必考知识点
★ 高三文科数学公式总结
★ 高三年级文科数学学习方法总结
★ 高三文科数学方法
★ 高考数学必考重点知识大全
★ 高三数学复数知识点整理 var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = ""; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();