摘要:高考文综选择一共多少分。 A.必要而不充7. 会用上述不等式证明一些简单问题.能够利用平均值不等式、柯西不等式
高考文综选择一共多少分。
A.必要而不充7. 会用上述不等式证明一些简单问题.能够利用平均值不等式、柯西不等式求一些特定函数的极值.分的条件 B.充分而不必要的条件高考文综试卷选择题共35题,每题4分,一共140分.
218文科高考1卷考题_高考文科281分能上什么大学
218文科高考1卷考题_高考文科281分能上什么大学
解:(Ⅰ)将抛物线 代入圆 的方程,消去 ,
选择题35道,140分,11道地理,12道,12道历史
一共35道题,每题4分,共140分
2010高考全国一卷文科数学选择题第八题详解
了解性检验(只要求2×2列联表)的基本思想、方法及其简单应用.一道不错的双曲线的题目
(3)能利用两角的余弦公式导出两角和的正弦、余弦、正切公式,导出二倍角的正弦、余弦、正切公式,了解它们的内在联系.设在右支③求定点、定值、最值,求参数取值的问题;
设PF1=a PF2=b F1F2=c c上的高为h
则由余弦定理可知 Cos60=【a2+b2-c2】/2ab
由双曲线自身性质可知 a-b=2
面积相等可知 1/2ch=1/2abSin60
由以上式子得 h= 二分之根六
所以ab=4
(8)已知f1 、f2 为双曲线C: x2-y2=1的左、右焦点,点P在C上,∠f1pf2=60° ,则[pf1][pf2]=
(A)2 (B)4 (C) 6 (D) 8
8.B【命题意图】本小题主要考查双曲线定义、几何性质、余弦定理,考查转化的数学思想,通过本题可以有效地考查考生的综合运用能力及运算能力.
2022全国新高考Ⅱ卷文科数学试题及解析
(A)150种 (B)180种 (C)300种 (D)345种在高考结束后,很多考生都会对,提前预估自己的分数,这样方便大家提前准备志愿填报。下面是我分享的2022全国新高考Ⅱ卷文科数学试题及解析,欢迎大家阅读。
(4)会用样本的频率分布估计总体分布,会用样本的基本数字特征估计总体的基本数字特征,理解用样本估计总体的思想.2022全国新高考Ⅱ卷文科数学试题及解析
2022全国新高考Ⅱ卷文科数学试题还未出炉,待高考结束后,我会时间更新2022全国新高考Ⅱ卷文科数学试题,供大家对照、估分、模拟使用。
2022高考数学大题题型 总结
一、三角函数或数列
数列是高考必考的内容之一。高考对这个知识点的考查非常全面。每年都会有等数列,等比数列的考题,而且经常以综合题出现,也就是说把数列知识和指数函数、对数函数和不等式等其他知识点综合起来。
近几年来,关于数列方面的考题题主要包含以下几个方面:
(1)数列基本知识考查,主要包括基本的等数列和等比数列概念以及通项公式和求和公式。
(2)把数列知识和其他知识点相结合,主要包括数列知识和函数、方程、不等式、三角、几何等其他知识相结合。
(3)应用题中的数列问题,一般是以增长率问题出现。
二、立体几何
高考立体几何试题一般共有4道(选择、填空题3道,解答题1道),共计总分27分左右,考查的知识点在20个以内。选择填空题考核立几中的计算型问题,而解答题着重考查立几中的逻辑推理型问题,当然,二者均应以正确的空间想象为前提。随着新的课程改革的进一步实施,立体几何考题正朝着多一点思考,少一点计算的发展。从历年的考题变化看,以简单几何体为载体的线面位置关系的论证,角与距离的探求是常考常新的热门话题。
三、统计与概率
1.掌握分类计数原理与分步计数原理,并能用它们分析和解决一些简单的应用问题。
2.理解排列的意义,掌握排列数计算公式,并能用它解决一些简单的应用问题。
3.理解组合的意义,掌握组合数计算公式和组合数的性质,并能用它们解决一些简单的应用问题。
4.掌握二项式定理和二项展开式的性质,并能用它们计算和证明一些简单的问题。
5.了解随机的发生存在着规律性和随机概率的意义。
6.了解等可能性的概率的意义,会用排列组合的基本公式计算一些等可能性的概率。
7.了解互斥、相互的意义,会用互斥的概率加法公式与相互的概率乘法公式计算一些的概率。
8.会计算在n次重复试验中恰好发生k次的概率.
四、解析几何(圆锥曲线)
高考解析几何剖析:
1、很多高考问题都是以平面上的点、直线、曲线(如圆、椭圆、抛物线、双曲线)这三大类几何元素为基础构成的图形的问题;
2、演绎规则就是代数的演绎规则,或者说就是列方程、解方程的规则。
有了以上两点认识,我们可以毫不犹豫地下这么一个结论,那就是解决高考解析几何问题无外乎做两项工作:
(1)、几何问题代数化。
(2)、用代数规则对代数化后的问题进行处理。
五、函数与导数
导数是微积分的初步知识,是研究函数,解决实际问题的有力工具。在高中阶段对于导数的学习,主要是以下几个方面:
1.导数的常规问题:
(1)刻画函数(比初等 方法 细微);
(2)同几何中切线联系(导数方法可用于研究平面曲线的切线);
(3)应用问题(初等方法往往技巧性要求较高,而导数方法显得简便)等关于次多项式的导数问题属于较难类型。
2.关于函数特征,最值问题较多,所以有必要专项讨论,导数法求最值要比初等方法快捷简便。
3.导数与解析几何或函数图象的混合问题是一种重要类型,也是高考中考察综合能力的一个方向,应引起注意。
2022高考解答题评分标准
解答题阅卷的评分原则一般是:问,错或未做,而第二问对,则第二问得分全给;前面错引起后面方法用对但结果出错,则后面给一半分。
解题策略:
(1)常见失分因素:
如图,四棱锥 中,底面 为矩形, 底面 , , ,点 在侧棱 上,1.对题意缺乏正确的理解,应做到慢审题快做题;
2.公式记忆不牢,考前一定要熟悉公式、定理、性质等;
3.思维不严谨,不要忽视易错点;
4.解题步骤不规范,一定要按课本要求,否则会因不规范答题失分,避免“对而不全”如解概率题,要给出适当的文字说明,不能只列几个式子或单纯的结论,表达不规范、字迹不工整等非智力因素会影响阅卷老师的“感情分”;
5.计算能力失分多,会做的一定不能放过,不能一味求快,例如平面解析中的圆锥曲线问题就要求较强的运算能力;
6.轻易放弃试题,难题不会做,可分解成小问题,分步解决,如最起码能将文字语言翻译成符号语言、设应用题未知数、设轨迹的动点坐标等,都能拿分。也许随着这些小步骤的罗列,还能悟出解题的灵感。
2022全国新高考Ⅱ卷文科数学试题及解析相关 文章 :
★ 2022高考全国甲卷数学试题及
★ 2022年全国乙卷高考语文真题试卷及解析(未公布)
★ 2022年浙江高考数学试卷
★ 2022新高考2卷语文试题及一览
★ 2022全国高考试卷分几类
★ 2022高考数学必考知识点归纳
★ 2022年高考数学必考知识点总结
★ 2022高考文综理综各题型分数值一览
★ 2022年新高考Ⅰ卷语文题目与参考
★ 2022新高考Ⅱ卷选择创造未来作文12篇
2018年高考文科数学考试大纲都有哪些?
(1)理解平面向量数量积的含义及其物理意义.Ⅰ. 考核目标与要求
了解回归分析的基本思想、方法及其简单应用.根据普通高等学校对新生文化素质的要求,依据中华2003年颁布的《普通高中课程方案(实验)》和《普通高中数学课程标准(实验)》的必修课程、选修课程系列1和系列4的内容,确定文史类高考数学科考试内容.
作 ‖ 交 于点E,则 ‖ , 平面SAD一、知识要求
知识是指《普通高中数学课程标准(实验)》(以下简称《课程标准》)中所规定的必修课程、选修课程系列1和系列4中的数学概念、性质、法则、公式、公理、定理以及由其内容反映的数学思想方法,还包括按照一定程序与步骤进行运算、处理数据、绘制图表等基本技能.
各部分知识的整体要求及其定位参照《课程标准》相应模块的有关说明.
对知识的要求依次是了解、理解、掌握三个层次.
1. 了解:要求对所列知识的含义有初步的、感性的认识,知道这一知识内容是什么,按照一定的程序和步骤照样模仿,并能(或会)在有关的问题中识别和认识它.
这一层次所涉及的主要行为动词有:了解,知道、识别,模仿,会求、会解等.
2. 理解:要求对所列知识内容有较深刻的理性认识,知道知识间的逻辑关系,能够对所列知识做正确的描述说明并用数学语言表达,能够利用所学的知识内容对有关问题进行比较、判别、讨论,具备利用所学知识解决简单问题的能力.
这一层次所涉及的主要行为动词有:描述,说明,表达,推测、想象,比较、判别,初步应用等.
3. 掌握:要求能够对所列的知识内容进行推导证明,能够利用所学知识对问题进行分析、研究、讨论,并且加以解决.
这一层次所涉及的主要行为动词有:掌握、导出、分析,推导、证明,研究、讨论、运用、解决问题等.
二、能力要求
1. 空间想象能力:能根据条件做出正确的图形,根据图形想象出直观形象;能正确地分析出图形中的基本元素及其相互关系;能对图形进行分解、组合;会运用图形与图表等手段形象地揭示问题的本质.
空间想象能力是对空间形式的观察、分析、抽象的能力,主要表现为识图、画图和对图形的想象能力.识图是指观察研究所给图形中几何元素之间的相互关系;画图是指将文字语言和符号语言转化为图形语言以及对图形添加辅助图形或对图形进行各种变换;对图形的想象主要包括有图想图和无图想图两种,是空间想象能力高层次的标志.
2. 抽象概括能力:抽象是指舍弃事物非本质的属性,揭示其本质的属性;概括是指把仅仅属于某一类对象的共同属性区分出来的思维过程.抽象和概括是相互联系的,没有抽象就不可能有概括,而概括必须在抽象的基础上得出某种观点或某个结论.
抽象概括能力是对具体的、生动的实例,经过分析提炼,发现研究对象的本质;从给定的大量信息材料中概括出一些结论,并能将其应用于解决问题或做出新的判断.
3. 推理论证能力:推理是思维的基本形式之一,它由前提和结论两部分组成;论证是由已有的正确的前提到被论证的结论的一连串的推理过程.推理既包括演绎推理,也包括合情推理;论证方法既包括按形式划分的演绎法和归纳法,也包括按思考方法划分的直接证法和间接证法.一般运用合情推理进行猜想,再运用演绎推理进行证明.
中学数学的推理论证能力是根据已知的事实和已获得的正确数学命题,论证某一数学命题真实性的初步的推理能力.
4. 运算求解能力:会根据法则、公式进行正确运算、变形和数据处理,能根据问题的条件寻找与设计合理、简捷的运算途径,能根据要求对数据进行估计和近似计算.
运算求解能力是思维能力和运算技能的结合.运算包括对数字的计算、估值和近似计算,对式子的组合变形与分解变形,对几何图形各几何量的计算求解等.运算能力包括分析运算条件、探究运算方向、选择运算公式、确定运算程序等一系列过程中的思维能力,也包括在实施运算过程中遇到障碍而调整运算的能力.
5. 数据处理能力:会收集、整理、分析数据,能从大量数据中抽取对研究问题有用的信息,并做出判断.
数据处理要是指针对研究对象的特殊性,选择合理的收集数据的方法,根据问题的具体情况,选择合适的统计方法整理数据,并构建模型对数据进行分析、推断,获得结论.
7. 创新意识:能发现问题、提出问题,综合与灵活地应用所学的数学知识、思想方法,选择有效的方法和手段分析信息,进行的思考、探索和研究,提出解决问题的思路,创造性地解决问题.
创新意识是理性思维的高层次表现.对数学问题的“观察、猜测、抽象、概括、证明”,是发现问题和解决问题的重要途径,对数学知识的迁移、组合、融会的程度越高,显示出的创新意识也就越强.
三、个性品质要求
个性品质是指考生个体的情感、态度和价值观.要求考生具有一定的数学视野,认识数学的科学价值和人文价值,崇尚数学的理性精神,形成审慎的思维习惯,体会数学的美学意义.
要求考生克服紧张情绪,以平和的心态参加考试,合理支配考试时间,以实事求是的科学态度解答试题,树立战胜困难的信心,体现锲而不舍的精神.
四、考查要求
数学学科的系统性和严密性决定了数学知识之间深刻的内在联系,包括各部分知识的纵向联系和横向联系,要善于从本质上抓住这些联系,进而通过分类、梳理、综合,构建数学试卷的框架结构.
1. 对数学基础知识的考查,既要全面又要突出重点.对于支撑学科知识体系的重点内容,要占有较大的比例,构成数学试卷的主体.注重学科的内在联系和知识的综合性,不刻意追求知识的覆盖面.从学科的整体高度和思维价值的高度考虑问题,在知识网络的交汇点处设计试题,使对数学基础知识的考查达到必要的深度.
2. 对数学思想方法的考查是对数学知识在更高层次上的抽象和概括的考查,考查时必须要与数学知识相结合,通过对数学知识的考查,反映考生对数学思想方法的掌握程度.
3. 对数学能力的考查,强调“以能力立意”,就是以数学知识为载体,从问题入手,把握学科的整体意义,用统一的数学观点组织材料,侧重体现对知识的理解和应用,尤其是综合和灵活的应用,以此来检测考生将知识迁移到不同情境中去的能力,从而检测出考生个体理性思维的广度和深度以及进一步学习的潜能.
对能力的考查要全面,强调综合性、应用性,并要切合考生实际.对推理论证能力和抽象概括能力的考查贯穿于全卷,是考查的重点,强调其科学性、严谨性、抽象性;对空间想象能力的考查主要体现在对文字语言、符号语言及图形语言的互相转化上;对运算求解能力的考查主要是对算法和推理的考查,考查以代数运算为主;对数据处理能力的考查主要是考查运用概率统计的基本方法和思想解决实际问题的能力.
4. 对应用意识的考查主要采用解决应用问题的形式.命题时要坚持“贴近生活,背景公平,控制难度”的原则,试题设计要切合中学数学教学的实际和考生的年龄特点,并结合实践经验,使数学应用问题的难度符合考生的水平.
5. 对创新意识的考查是对高层次理性思维的考查.在考试中创设新颖的问题情境,构造有一定深度和广度的数学问题时,要注重问题的多样化,体现思维的发散性;精心设计考查数学主体内容,体现数学素质的试题;也要有反映数、形运动变化的试题以及研究型、探索型、开放型等类型的试题.
数学科的命题,在考查基础知识的基础上,注重对数学思想方法的考查,注重对数学能力的考查,展现数学的科学价值和人文价值,同时兼顾试题的基础性、综合性和应用性,重视试题间的层次性,合理调控综合程度,坚持多角度、多层次的考查,努力实现全面考查综合数学素养的要求.
Ⅱ.考试范围与要求
本部分包括必考内容和选考内容两部分.必考内容为《课程标准》的必修内容和选修系列1的内容;选考内容为《课程标准》的选修系列4的“坐标系与参数方程”“不等式选讲”2个专题.
必考内容
(一)
1. 的含义与表示
(1)了解的含义、元素与的属于关系.
(2)能用自然语言、图形语言、语言(列举法或描述法)描述不同的具体问题.
2. 间的基本关系
(1)理解之间包含与相等的含义,能识别给定的子集.
(2)在具体情境中,了解全集与空集的含义.
3. 的基本运算
(1)理解两个的并集与交集的含义,会求两个简单的并集与交集.
(2)理解在给定中一个子集的补集的含义,会求给定子集的补集.
(3)能使用韦恩(Venn)图表达的关系及运算.
(二) 函数概念与基本初等函数Ⅰ(指数函数、对数函数、幂函数)
1. 函数
(1)了解构成函数的要素,会求一些简单函数的定义域和值域;了解映射的概念.
(2)在实际情境中,会根据不同的需要选择恰当的方法(如图像法、列表法、解析法)表示函数.
(3)了解简单的分段函数,并能简单应用.
(4)理解函数的单调性、值、最小值及其几何意义;结合具体函数,了解函数奇偶性的含义.
(5)会运用函数图像理解和研究函数的性质.
2. 指数函数
(1)了解指数函数模型的实际背景.
(2)理解有理指数幂的含义,了解实数指数幂的意义,掌握幂的运算.
(3)理解指数函数的概念,理解指数函数的单调性,掌握指数函数图像通过的特殊点.
(4)知道指数函数是一类重要的函数模型.
3. 对数函数
(1)理解对数的概念及其运算性质,知道用换底公式能将一般对数转化成自然对数或常用对数;了解对数在简化运算中的作用.
(2)理解对数函数的概念,理解对数函数的单调性,掌握对数函数图像通过的特殊点.
(3)知道对数函数是一类重要的函数模型.
4. 幂函数
(1)了解幂函数的概念.
5. 函数与方程
(1) 结合二次函数的图像,了解函数的零点与方程根的联系,判断一元二次方程根的存在性及根的个数.
(2)根据具体函数的图像,能够用二分法求相应方程的近似解.
6. 函数模型及其应用
(1)了解指数函数、对数函数以及幂函数的增长特征,知道直线上升、指数增长、对数增长等不同函数类型增长的含义.
(2)了解函数模型(如指数函数、对数函数、幂函数、分段函数等在生活中普遍使用的函数模型)的广泛应用.
(三) 立体几何初步
1. 空间几何体
(1)认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构.
(2)能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能识别上述三视图所表示的立体模型,会用斜二侧法画出它们的直观图.
(3)会用平行投影与中心投影两种方法画出简单空间图形的三视图与直观图,了解空间图形的不同表示形式.
(4)会画某些建筑物的视图与直观图(在不影响图形特征的基础上,尺寸、线条等不做严格要求).
(5)了解球、棱柱、棱锥、台的表面积和体积的计算公式.
2. 点、直线、平面之间的位置关系
(1)理解空间直线、平面位置关系的定义,并了解如下可以作为推理依据的公理和定理.
公理1:如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在此平面内.
公理2:过不在同一条直线上的三点,有且只有一个平面.
公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.
公理4:平行于同一条直线的两条直线互相平行.
定理:空间中如果一个角的两边与另一个角的两边分别平行,那么这两个角相等或互补.
(2)以立体几何的上述定义、公理和定理为出发点,认识和理解空间中线面平行、垂直的有关性质与判定定理.
理解以下判定定理.
如果平面外一条直线与此平面内的一条直线平行,那么该直线与此平面平行.
如果一个平面内的两条相交直线与另一个平面都平行,那么这两个平面平行.
如果一条直线与一个平面内的两条相交直线都垂直,那么该直线与此平面垂直.
如果一个平面经过另一个平面的垂线,那么这两个平面互相垂直.
理解以下性质定理,并能够证明.
如果一条直线与一个平面平行,那么经过该直线的任一个平面与此平面的交线和该直线平行.
如果两个平行平面同时和第三个平面相交,那么它们的交线相互平行.
垂直于同一个平面的两条直线平行.
如果两个平面垂直,那么一个平面内垂直于它们交线的直线与另一个平面垂直.
(3)能运用公理、定理和已获得的结论证明一些空间图形的位置关系的简单命题.
(四)平面解析几何初步
1. 直线与方程
(1)在平面直角坐标系中,结合具体图形,确定直线位置的几何要素.
(2)理解直线的倾斜角和斜率的概念,掌握过两点的直线斜率的计算公式.
(3)能根据两条直线的斜率判定这两条直线平行或垂直.
(4)掌握确定直线位置的几何要素,掌握直线方程的几种形式(点斜式、两点式及一般式),了解斜截式与一次函数的关系.
(5)能用解方程组的方法求两条相交直线的交点坐标.
(6)掌握两点间的距离公式、点到直线的距离公式,会求两条平行直线间的距离.
2. 圆与方程
(1)掌握确定圆的几何要素,掌握圆的标准方程与一般方程.
(2)能根据给定直线、圆的方程判断直线与圆的位置关系;能根据给定两个圆的方程判断两圆的位置关系.
(3)能用直线和圆的方程解决一些简单的问题.
(4)初步了解用代数方法处理几何问题的思想.
3. 空间直角坐标系
(1)了解空间直角坐标系,会用空间直角坐标表示点的位置.
(五) 算法初步
1. 算法的含义、程序框图
(1)了解算法的含义,了解算法的思想.
(2)理解程序框图的三种基本逻辑结构:顺序、条件分支、循环.
理解几种基本算法语句——输入语句、输出语句、赋值语句、条件语句、循环语句的含义.
(六) 统计
1. 随机抽样
(1)理解随机抽样的必要性和重要性.
(2)会用简单随机抽样方法从总体中抽取样本;了解分层抽样和系统抽样方法.
2. 用样本估计总体
(1)了解分布的意义和作用,会列频率分布表,会画频率分布直方图、频率折线图、茎叶图,理解它们各自的特点.
(2)理解样本数据标准的意义和作用,会计算数据标准.
(3)能从样本数据中提取基本的数字特征(如平均数、标准),并给出合理的解释.
(5)会用随机抽样的基本方法和样本估计总体的思想解决一些简单的实际问题.
3. 变量的相关性
(1)会作两个有关联变量的数据的散点图,会利用散点图认识变量间的相关关系.
(2)了解最小二乘法的思想,能根据给出的线性回归方程系数公式建立线性回归方程.
(七) 概率
1. 与概率
(1)了解随机发生的不确定性和频率的稳定性,了解概率的意义,了解频率与概率的区别.
(2)了解两个互斥的概率加法公式.
2. 古典概型
(1)理解古典概型及其概率计算公式.
(2)会用列举法计算一些随机所含的基本数及发生的概率.
3. 随机数与几何概型
(1)了解随机数的意义,能运用模拟方法估计概率.
(2)了解几何概型的意义.
(八) 基本初等函数Ⅱ(三角函数)
1. 任意角的概念、弧度制
(1)了解任意角的概念.
(2)了解弧度制的概念,能进行弧度与角度的互化.
2. 三角函数
(1)理解任意角三角函数(正弦、余弦、正切)的定义.
(4)理解同角三角函数的基本关系式:
(6)了解三角函数是描述周期变化现象的重要函数模型,会用三角函数解决一些简单实际问题.
(九) 平面向量
1. 平面向量的实际背景及基本概念
(1)了解向量的实际背景.
(2)理解平面向量的概念,理解两个向量相等的含义.
(3)理解向量的几何表示.
2. 向量的线性运算
(1)掌握向量加法、减法的运算,并理解其几何意义.
(2)掌握向量数乘的运算及其几何意义,理解两个向量共线的含义.
(3)了解向量线性运算的性质及其几何意义.
3. 平面向量的基本定理及坐标表示
(1)了解平面向量的基本定理及其意义.
(2)掌握平面向量的正交分解及其坐标表示.
(3)会用坐标表示平面向量的加法、减法与数乘运算.
(4)理解用坐标表示的平面向量共线的条件.
4. 平面向量的数量积
(2)了解平面向量的数量积与向量投影的关系.
(3)掌握数量积的坐标表达式,会进行平面向量数量积的运算.
(4)能运用数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直关系.
5. 向量的应用
(1)会用向量方法解决某些简单的平面几何问题.
(2)会用向量方法解决简单的力学问题与其他一些实际问题.
(十) 三角恒等变换
1. 和与的三角函数公式
(1)会用向量的数量积推导出两角的余弦公式.
(2)能利用两角的余弦公式导出两角的正弦、正切公式.
2. 简单的三角恒等变换
能运用上述公式进行简单的恒等变换(包括导出积化和、和化积、半角公式,但对这三组公式不要求记忆).
(十一)解三角形
1. 正弦定理和余弦定理
掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题.
2. 应用
能够运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题.
(十二)数列
1. 数列的概念和简单表示法
(1)了解数列的概念和几种简单的表示方法(列表、图像、通项公式).
(2)了解数列是自变量为正整数的一类函数.
2. 等数列、等比数列
(1)理解等数列、等比数列的概念.
(2)掌握等数列、等比数列的通项公式与前项和公式.
(3)能在具体的问题情境中识别数列的等关系或等比关系,并能用有关知识解决相应的问题.
(4)了解等数列与一次函数、等比数列与指数函数的关系.
(十三)不等式
1. 不等关系
了解现实世界和日常生活中的不等关系,了解不等式(组)的实际背景.
2. 一元二次不等式
(1)会从实际情境中抽象出一元二次不等式模型.
(2)通过函数图像了解一元二次不等式与相应的二次函数、一元二次方程的联系.
(3)会解一元二次不等式,对给定的一元二次不等式,会设计求解的程序框图.
3. 二元一次不等式组与简单线性规划问题
(1)会从实际情境中抽象出二元一次不等式组.
(2)了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组.
(3)会从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决.
(1)了解基本不等式的证明过程.
(2)会用基本不等式解决简单的(小)值问题.
(十四)常用逻辑用语
1. 命题及其关系
(1)理解命题的概念.
(2)了解“若,则”形式的命题及其逆命题、否命题与逆否命题,会分析四种命题的相互关系.
(3)理解必要条件、充分条件与充要条件的意义.
2. 简单的逻辑联结词
了解逻辑联结词“或”“且”“非”的含义.
3. 全称量词与存在量词
(1)理解全称量词与存在量词的意义.
(2)能正确地对含有一个量词的命题进行否定.
(十五)圆锥曲线与方程
(1)了解圆锥曲线的实际背景,了解圆锥曲线在刻画现实世界和解决实际问题中的作用.
(2)掌握椭圆的定义、几何图形、标准方程及简单几何性质.
(3)了解双曲线、抛物线的定义、几何图形和标准方程,知道它们的简单几何性质.
(4)理解数形结合的思想.
(5)了解圆锥曲线的简单应用.
(十六)导数及其应用
1. 导数概念及其几何意义
(1)了解导数概念的实际背景.
(2)理解导数的几何意义.
2. 导数的运算
3. 导数在研究函数中的应用
(1)了解函数单调性和导数的关系;能利用导数研究函数的单调性,会求函数的单调区间(其中多项式函数一般不超过三次).
(2)了解函数在某点取得极值的必要条件和充分条件;会用导数求函数的极大值、极小值(其中多项式函数一般不超过三次);会求闭区间上函数的值、最小值(其中多项式函数一般不超过三次).
4. 生活中的优化问题.
会利用导数解决某些实际问题.
(十七)统计案例
了解下列一些常见的统计方法,并能应用这些方法解决一些实际问题.
1. 性检验
2. 回归分析
(十八)推理与证明
1. 合情推理与演绎推理
(1)了解合情推理的含义,能利用归纳和类比等进行简单的推理,了解合情推理在数学发现中的作用.
(2)了解演绎推理的重要性,掌握演绎推理的基本模式,并能运用它们进行一些简单推理.
(3)了解合情推理和演绎推理之间的联系和异.
2. 直接证明与间接证明
(1)了解直接证明的两种基本方法——分析法和综合法;了解分析法和综合法的思考过程、特点.
(2)了解间接证明的一种基本方法——反证法;了解反证法的思考过程、特点.
(十九)数系的扩充与复数的引入
1. 复数的概念
(1)理解复数的基本概念.
(2)理解复数相等的充要条件.
(3)了解复数的代数表示法及其几何意义.
2. 复数的四则运算
(1)会进行复数代数形式的四则运算.
(2)了解复数代数形式的加、减运算的几何意义.
(二十)框图
1. 流程图
(1)了解程序框图.
(2)了解工序流程图(即统筹图).
(3)能绘制简单实际问题的流程图,了解流程图在解决实际问题中的作用.
2. 结构图
(1)了解结构图.
(2)会运用结构图梳理已学过的知识,整理收集到的资料信息.
选考内容
(一)坐标系与参数方程
1. 坐标系
(1)理解坐标系的作用.
(2)了解在平面直角坐标系伸缩变换作用下平面图形的变化情况.
(3)能在极坐标系中用极坐标表示点的位置,理解在极坐标系和平面直角坐标系中表示点的位置的区别,能进行极坐标和直角坐标的互化.
(4)能在极坐标系中给出简单图形的方程.通过比较这些图形在极坐标系和平面直角坐标系中的方程,理解用方程表示平面图形时选择适当坐标系的意义.
(5)了解柱坐标系、球坐标系中表示空间中点的位置的方法,并与空间直角坐标系中表示点的位置的方法相比较,了解它们的区别.
2. 参数方程
(1)了解参数方程,了解参数的意义.
(2)能选择适当的参数写出直线、圆和圆锥曲线的参数方程.
(3)了解平摆线、渐开线的生成过程,并能推导出它们的参数方程.
(4)了解其他摆线的生成过程,了解摆线在实际中的应用,了解摆线在表示行星运动轨道中的作用.
(二)不等式选讲
1. 理解的几何意义,并能利用含不等式的几何意义证明以下不等式:
4. 会用向量递归方法讨论排序不等式.
5. 了解数学归纳法的原理及其使用范围,会用数学归纳法证明一些简单问题.
6. 会用数学归纳法证明伯努利不等式:
了解当n为大于1的实数时伯努利不等式也成立.
祝考生们高考取得好成绩!
高考试卷试题及
(A) (B) (C) (D)2011年普通高等学校招生全国统一考试(湖北卷)
数学试题(文史类)
本试题卷共4页,三大题21小题。全卷满分150分,考试用时120分钟。
★祝考试顺利★
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在试题卷和答题卡上。并将准考证号条形码粘贴在答题卡上的指定位置。用2B铅笔将答题卡上试卷类型A后的方框涂黑。
2.选择题的作答:每小题选出后,用2B铅笔把答题卡上对应题目选项的标号涂黑,如需改动,用橡皮擦干净后,再选涂其他标号,答在试题卷、草稿纸上无效。
3.填空题和解答题的作答:用0.5毫米黑色黑水签字笔直接在答题卡上对应的答题区域内。答在试题卷、草稿纸上无效。
4.考生必须保持答题卡的整洁。考试结束后,请将本试题卷和答题卡一并交回。
一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知 则
A. B.
C. D.
2.若向量 ,则2a+b与 的夹角等于
A. B. C. D.
3.若定义在R上的偶函数 和奇函数 满足 ,则 =
A. B. C. D.
4.将两个顶点在抛物线 上,另一个顶点是此抛物线焦点的正三角形个数记为 ,则
A. B.
C. D.
5.有一个容量为200的样本,其频率分布直方图如图所示,根据样本的频率分布直方图估计,样本数据落在区间 内的频数为
A.18 B.36
C.54 D.72
6.已知函数 ,若 ,则x的取值范围为
A. B.
C. D.
7.设球的体积为 ,它的内接正方体的体积为 ,下列说法中最合适的是
A. 比 大约多一半 B. 比 大约多两倍半
C. 比 大约多一倍 D. 比 大约多一倍半
8.直线 与不等式组 表示的平面区域的公共点有
A.0个 B.1个 C.2个 D.无数个
9.《九章算术》“竹九节”问题:现有一根9节的竹子,自上而下各节的容积成等数列,上面4节的容积共3升,下面3节的容积共4升,则第5节的容积为
A.1升 B. 升 C. 升 D. 升
10.若实数a,b满足 ,且 ,则称a与b互补,记 那么 是a与b互补的
C.充要条件 D.既不充分也不必要的条件
二、填空题:本大题共5小题,每小题5分,共25分,请将填在答题卡对应题号的位置上,一题两空的题,其按先后次序填写,答错位置,书写不清,模棱两可均不得分。
11.某市有大型超市200家、中型超市400家、小型超市1400家。为掌握各类超市的营业情况,现按分层抽样方法抽取一个容量为100的样本,应抽取中型超市__________家。
12. 的展开式中含 的项的系数为__________。(结果用数值表示)
13.在30瓶饮料中,有3瓶已过了保质期,从这30瓶饮料中任取2瓶,则至少取到1瓶已过保质期饮料的概率为__________。(结果用最简分数表示)
14.过点(—1,—2)的直线l被圆 截得的弦长为 ,则直线l的斜率为__________。
15.里氏震级M的计算公式为: ,其中A是测震仪记录的曲线的振幅, 是相应的标准的振幅。设在一次中,测震仪记录的振幅是1000,此时标准的振幅为0.001,则此次的震级为 级;9级的振幅是5级振幅的 倍。
三、解答题:本大题共6小题,共75分,解答应写出文字说明、证明过程或演算步骤。
16.(本小题满分12分)
设 的内角A、B、C所对的边分别为a、b、c,已知
(I) 求 的周长;
(II)求 的值。
17.(本小题满分12分)
成等数列的三个正数的和等于15,并且这三个数分别加上2、5、13后成为等比数列 中的 、 、 。
(I) 求数列 的通项公式;
(II) 数列 的前n项和为 ,求证:数列 是等比数列。
1的周长为8.(本小题满分12分)
如图,已知正三棱柱 - 的底面边长为2,侧棱长为 ,点E在侧棱 上,点F在侧棱 上,且 , .
(I) 求证: ;
(II) 求二面角 的大小。
19.(本小题满分12分)
提高过江大桥的车辆通行能力可改善整个城市的交通状况,在一般情况下,大桥上的车流速度v(单位:千米/小时)是车流密度x(单位:辆 /千米)的函数,当桥上的车流密度达到200辆 /千米时,造成堵塞,此时车流速度为0;当车流密度不超过20辆 /千米时,车流速度为60千米/小时,研究表明:当 时,车流速度v是车流密度x的一次函数。
(I)当 时,求函数v(x)的表达式;
(II)当车流密度x为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/小时) 可以达到,并求出值。(到1辆/小时)。
设函数 , ,其中 ,a、b为常数,已知曲线 与 在点(2,0)处有相同的切线l。
(I) 求a、b的值,并写出切线l的方程;
(II)若方程 有三个互不相同的实根0、 、 ,其中 ,且对任意的 , 恒成立,求实数m的取值范围。
21.(本小题满分14分)
平面内与两定点 、 ( )连线的斜率之积等于非零常数m的点的轨迹,加上 、A2 两点所成的曲线C可以是圆、椭圆或双曲线。
(Ⅰ)求曲线C的方程,并讨论C的形状与m值的关系;
(Ⅱ)当 时,对应的曲线为 ;对给定的 ,对应的曲线为 ,设 、 是 的两个焦点。试问:在 上,是否存在点 ,使得△ 的面积 。若存在,求 的值;若不存在,请说明理由。
参
一、选择题:本题主要考查基础知识和基本运算。每小题5分,满分50分。
A卷:1—5ACDCB 6—10ADBBC
B卷:1—5DCABC 6—10ADBBC
二、填空题:本题主要考查基础知识和基本运算,每小题5分,满分25分。
11.20 12.17 13. 14.1或 15.6,10000
三、解答题:本大题共6小题,共75分。解答应写出文字说明,证明过程或演算步骤。
16.本小题主要考查三角函数的基本公式和解斜三角形的基础知识,同时考查基本运算能力。(满分12分)
解:(Ⅰ)
(Ⅱ)
,故A为锐角,
17.本小题主要考查等数列,等比数列及其求和公式等基础知识,同时考查基本运算能力。(满分12分)
解:(Ⅰ)设成等数列的三个正数分别为
依题意,得
所以 中的 依次为
依题意,有 (舍去)
故 的第3项为5,公比为2。
由所以 是以 为首项,2为以比的等比数列,其通项公式为
(Ⅱ)数列 的前 项和 ,即
所以
因此 为首项,公比为2的等比数列。
18.本小题主要考查空间直线与平面的位置关系和二面角的求法,同时考查空间想象能力和推理论证能力。(满分12分)
解法1:(Ⅰ)由已知可得
于是有
所以
又由
(Ⅱ)在 中,由(Ⅰ)可得
于是有EF2+CF2=CE2,所以
又由(Ⅰ)知CF C1E,且 ,所以CF 平面C1EF,
又 平面C1EF,故CF C1F。
于是 即为二面角E—CF—C1的平面角。
由(Ⅰ)知 是等腰直角三角形,所以 ,即所求二面角E—CF—C1的大小为 。
解法2:建立如图所示的空间直最主要的区别有两点:角坐标系,则由已知可得
(Ⅰ)
(Ⅱ) ,设平面CEF的一个法向量为
由即
设侧面BC1的一个法向量为
设二面角E—CF—C1的大小为θ,于是由θ为锐角可得
,所以
即所求二面角E—CF—C1的大小为 。
19.本小题主要考查函数、最值等基础知识,同时考查运用数学知识解决实际问题的能力。(满分12分)
解:(Ⅰ)由题意:当 ;当
再由已知得
故函数 的表达式为
(Ⅱ)依题意并由(Ⅰ)可得
当 为增函数,故当 时,其值为60×20=1200;
当 时,
当且仅当 ,即 时,等号成立。
所以,当 在区间[20,200]上取得值
综上,当 时, 在区间[0,200]上取得值 。
即当车流密度为100辆/千米时,车流量可以达到,值约为3333辆/小时。
20.本题主要考查函数、导数、不等式等基础知识,同时考查综合运用数学知识进行推理论证的能力,以及函数与方程和特殊与一般的思想,(满分13分)
解:(Ⅰ)
由于曲线 在点(2,0)处有相同的切线,
故有
由此得
所以 ,切线 的方程为
(Ⅱ)由(Ⅰ)得 ,所以
依题意,方程 有三个互不相同的实数 ,
故 是方程 的两相异的实根。
所以
又对任意的 成立,
特别地,取 时, 成立,得
由韦达定理,可得
对任意的
则所以函数 的值为0。
于是当 时,对任意的 恒成立,
综上, 的取值范围是
20.本小题主要考查曲线与方程、圆锥曲线等基础知识,同时考查推理运算的能力,以及分类与整合和数形结合的思想。(满分14分)
解:(I)设动点为M,其坐标为 ,
当 时,由条件可得
即 ,
又 的坐标满足
故依题意,曲线C的方程为
当 曲线C的方程为 是焦点在y轴上的椭圆;
当 时,曲线C的方程为 ,C是圆心在原点的圆;
当 时,曲线C的方程为 ,C是焦点在x轴上的椭圆;
当 时,曲线C的方程为 C是焦点在x轴上的双曲线。
(II)由(I)知,当m=-1时,C1的方程为
当 时,
C2的两个焦点分别为
对于给定的 ,
C1上存在点 使得 的充要条件是
由①得 由②得
当或 时,
存在点N,使S=|m|a2;
当或 时,
不存在满足条件的点N,
当 时,
由 ,
可得
令 ,
则由 ,
从而 ,
于是由 ,
可得
综上可得:
当 时,在C1上,存在点N,使得
当 时,在C1上,存在点N,使得
当 时,在C1上,不存在满足条件的点N。
2022全国新高考Ⅰ卷(数学)真题及解析
即解得 ,即高考结束后,考生们相互之间都会对、估分,所以知道有本省的高考试题和非常重要,下面我为大家带来2022全国新高考Ⅰ卷(数学)真题及解析,希望对您有帮助,欢迎参考阅读!
2022全国新高考Ⅰ卷数
2022全国新高考Ⅰ卷数解析
高考数学冲刺备考技巧
对大多数的考生而言,决定其成败的往往是基础题和中等难度的问题,这些试题约占整张试卷的五分之四左右。因此,考生在复习时,一定要先保证基础题和中等难度的试题得分,不要一味地追求难题。在解题 方法 上,一些典型方法,尤其是通性通法,要灵活掌握。对于那些解题技巧并不常见,而且比较偏、怪的试题,则不必花费太多的时间。
对于近两年的高考真题,可以模仿高考的考试时间和考试要求,感受高考的氛围,训练答题的时间和考试状态。同时,在模拟过程中,也要注重答题规范性的训练,尽量避免因为字迹、涂卡等因素影响考试成绩。
高考数学必考知识点
圆的标准方程(x-a)2+(y-b)2=r2注:(a,b)是圆心坐标
圆的一般方程x2+y2+Dx+Ey+F=0注:D2+E2-4F>0
抛物线标准方程y2=2pxy2=-2p_2=2pyx2=-2py
直棱柱侧面积S=c_h斜棱柱侧面积S=c'_h
正棱锥侧面积S=1/2c_h'正棱台侧面积S=1/2(c+c')h'
圆台侧面积S=1/2(c+c')l=pi(R+r)l球的表面积S=4pi_r2
某些数列前n项和
1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n2
2+4+6+8+10+12+14+…+(2n)=n(n+1) 12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6
13+23+33+43+53+63+…n3=n2(n+12cosAcosB=cos(A+B)-sin(A-B))2/4 1_2+2_3+3_4+4_5+5_6+6_7+…+n(n+1)=n(n+1)(n+2)/3
正弦定理 a/sinA=b/sinB=c/sinC=2R 注: 其中 R 表示三角形的外接圆半径
余弦定理 b2=a2+c2-2accosB 注:角B是边a和边c的夹角
圆的标准方程 (x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标
圆的一般方程 x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0
抛物线标准方程 y2=2px y2=-2px x2=2py x2=-2py
直棱柱侧面积 S=c_h 斜棱柱侧面积 S=c'_h
正棱锥侧面积 S=1/2c_h' 正棱台侧面积 S=1/2(c+c')h'
圆台侧面积 S=1/2(c+c')l=pi(R+r)l 球的表面积 S=4pi_r2
圆柱侧面积 S=c_h=2pi_h 圆锥侧面积 S=1/2_c_l=pi_r_l
弧长公式 l=a_r a是圆心角的弧度数r >0 扇形面积公式 s=1/2_l_r
锥体体积公式 V=1/3_S_H 圆锥体体积公式 V=1/3_pi_r2h
斜棱柱体积 V=S'L 注:其中,S'是直截面面积, L是侧棱长
柱体体积公式 V=s_h 圆柱体 V=pi_r2h
2022全国新高考Ⅰ卷(数学)真题及解析相关 文章 :
★ 2022高考全国乙卷试题及(理科)
★ 2022年全国新高考Ⅰ卷英语试题及
★ 2022全国新高考Ⅱ卷文科数学试题及解析
★ 2022全国甲卷高考数学文科试卷及解析
★ 2022年新高考Ⅱ卷数试卷及
★ 2022高考甲卷数试卷及
★ 2022sin(A/2)=√((1-cosA)/2)高考全国甲卷数学试题及
★ 2022全国新高考Ⅰ卷英语试题及解析
★ 2022全国新高考I卷语文试题及
高考文科卷
6. 应用意识:能综合应用所学数学知识、思想和方法解决问题,包括解决相关学科、生产、生活中简单的数学问题;能理解对问题陈述的材料,并对所提供的信息资料进行归纳、整理和分类,将实际问题抽象为数学问题;能应用相关的数学方法解决问题进而加以验证,并能用数学语言正确地表达和说明.应用的主要过程是依据现实的生活背景,提炼相关的数量关系,将现实问题转化为数学问题,构造数学模型,并加以解决.1、从难易程度看,高考理科数学要难于高考文科数学;
解:设 的公为 ,数列 的公比为 ,2、从内容方面看,高考理科数学考的比较全面,高考文科数学有些内容不考,具体不同点,要看当年的考试大纲;
题的大样类似,有六成以上的题是一样的;一般题不一样,题一般理科考察虚数,文科不考;填空题可能理科会出现统计的问题,相对难一些;8.了解证明不等式的基本方法:比较法、综合法、分析法、反证法、放缩法.排列组合一般理科可能会多一问;一题问有区别,理科的弯会大一些。一言蔽之,理科的难度大一些,但是题目类似。
2009高考数学文科全国卷1
★ 2022年全国新高考II卷数及2009年普通高等学校招生全国统一考试
(2)会推导空间两点间的距离公式.文科数学(必修+选修Ⅰ)
2. 基本算法语句本试卷分第卷(选择题)和第卷(非选择题)两部分.第卷1至2页,第卷3至4页.考试结束后,将本试卷和答题卡一并交回.
第Ⅰ卷
注意事项:
1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号、填写清楚 ,并贴好条形码.请认真核准条形码上的准考证号、姓名和科目.
2.每小题选出后,用2B铅笔把答题卡上对应题目的标号涂黑,如需改动,用橡皮擦干净后,再选涂其他标号.在试题卷上作答无效.
3.本卷共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.
参考公式:
如果 相互,那么 其中 表示球的半径
球的体积公式
如果 在一次试验中发生的概率是 ,那么
次重复试验中恰好发生 次的概率 其中 表示球的半径
一、选择题
(1) 的值为
(A) (B) (C) (D)
【解析】本小题考查诱导公式、特殊角的三角函数值,基础题。
解: ,故选择A。
(2)设A={4,5,7,9},B={3,4,7,8,9},全集 ,则 中的元素共有
(A) 3个 (B) 4个 (C)5个 (D)6个
【解析】本小题考查的运算,基础题。(同理1)
解: , 故选A。也可用摩根定律:
(3)不等式 的解集为
(A) (B)
(C) (D)
【解析】本小题考查解含有的不等式,基础题。
解: ,
故选择D。
(4)已知tan =4,cot = ,则tan(a+ )=
【解析】本小题考查同角三角函数间的关系、正切的和角公式,基础题。
解:由题 , ,故选择B。
(5)设双曲线 的渐近线与抛物线 相切,则该双曲线的离心率等于
(A) (B)2 (C) (D)
【解析】本小题考查双曲线的渐近线方程、直线与圆锥曲线的位置关系、双曲线的离心率,基础题。
(6)已知函数 的反函数为 ,则
(A)0 (B)1 (C)2 (D)4
【解析】本小题考查反函数,基础题。
解:由题令 得 ,即 ,又 ,所以 ,故选择C。
(7)甲组有5名男同学、3名女同学;乙组有6名男同学、2名女同学,若从甲、乙两组中各选出2名同学,则选出的4人中恰有1名女同学的不同选法共有
【解析】本小题考查分类计算原理、分步计数原理、组合等问题,基础题。
解:由题共有 ,故选择D。
(8)设非零向量 、 、 满足 ,则
(A)150° (B)120° (C)60° (D)30°
【解析】本小题考查向量的几何运算、考查数形结合的思想,基础题。
解:由向量加法的平行四边形法则,知 、 可构成菱形的两条相邻边,且 、 为起点处的对角线长等于菱形的边长,故选择B。
(9)已知三棱柱 的侧棱与底面边长都相等, 在底面 上的射影为 的中点,则异面直线 与 所成的角的余弦值为
(A) (B) (C) (D)
【解析】本小题考查棱柱的性质、异面直线所成的角,基础题。(同理7)
解:设 的中点为D,连结 D,AD,易知 即为异面直线 与 所成的角,由三角余弦定理,易知 .故选D
(10) 如果函数 的图像关于点 中心对称,那么 的最小值为
(A) (B) (C) (D)
【解析】本小题考查三角函数的图象性质,基础题。
解: 函数 的图像关于点 中心对称
由此易得 .故选A
(11)已知二面角 为600 ,动点P、Q分别在面 内,P到 的距离为 ,Q到 的距离为 ,则P、Q两点之间距离的最小值为
【解析】本小题考查二面角、空间里的距离、最值问题,综合题。(同理10)
解:如图分别作
,连
,又
当且仅当 ,即 重合时取最小值。故选C。
(12)已知椭圆 的右焦点为F,右准线 ,点 ,线段AF交C于点B。若 ,则 =
(A) (B) 2 (C) (D) 3
【解析】本小题考查椭圆的准线、向量的运用、椭圆的定义,基础题。
解:过点B作 于M,并设右准线 与x轴的交点为N,易知FN=1.由题意 ,故 .又由椭圆的第二定义,得 .故选A
2009年普通高等学校招生全国统一考试
文科数学(必修 选修Ⅰ)
第Ⅱ卷
注意事项:
1.答题前,考生先在答题卡上用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,然后贴好条形码.请认真核准条形码上的准考证号、姓名和科目.
2.第Ⅱ卷共7页,请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域内作答,在试题卷上作答无效.
3.本卷共10小题,共90分.
二、填空题:本大题共4小题,每小题5分,共20分.把填在题中横线上.
(注意:在试题卷上作答无效)
(13) 的展开式中, 的系数与 的系数之和等于_____________.
【解析】本小题考查二项展开式通项、基础题。(同理13)
解: 因 所以有
(14)设等数列 的前 项和为 。若 ,则 _______________.
【解析】本小题考查等数列的性质、前 项和,基础题。(同理14)
解: 是等数列,由 ,得
。(15)已知 为球 的半径,过 的中点 且垂直于 的平面截球面得到圆 ,若圆 的面积为 ,则球 的表面积等于__________________.
【解析】本小题考查球的截面圆性质、球的表面积,基础题。
解:设球半径为 ,圆M的半径为 ,则 ,即 由题得 ,所以 。
(16)若直线 被两平行线 所截得的线段的长为 ,则 的倾斜角可以是
① ② ③ ④ ⑤
其中正确的序号是 .(写出所有正确的序号)
【解析】本小题考查直线的斜率、直线的倾斜角、两条平行线间的距离,考查数形结合的思想。
解:两平行线间的距离为 ,由图知直线 与 的夹角为 , 的倾斜角为 ,所以直线 的倾斜角等于 或 。故填写①或⑤
三.解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.
(17)(本小题满分10分)(注意:在试题卷上作答无效)
设等数列{ }的前 项和为 ,公比是正数的等比数列{ }的前 项和为 ,已知 的通项公式.
【解析】本小题考查等数列与等比数列的通项公式、前 项和,基础题。
由 得 ①
得 ②
由①②及 解得
故所求的通项公式为 。
(18)(本小题满分12分)(注意:在试用题卷上作答无效)
在 中,内角 的对边长分别为 .已知 ,且 ,求 .
【解析】本小题考查正弦定理、余弦定理。
解:由余弦定理得 ,
又 ,
,即 ①
由正弦定理得
又由已知得
,所以 ②
故由①②解得
(19)(本小题满分12分)(注决:在试题卷上作答无效)
(Ⅰ)证明: 是侧棱 的中点;
(Ⅱ)求二面角 的大小。(同理18)
解法一:
(I)
连接AE,则四边形ABME为直角梯形
作 ,垂足为F,则AFME为矩形
设 ,则 ,
由解得
即 ,从而
所以 为侧棱 的中点
(Ⅱ) ,又 ,所以 为等边三角形,
又由(Ⅰ)知M为SC中点
,故
取AM中点G,连结BG,取SA中点H,连结GH,则 ,由此知 为二面角 的平面角
连接 ,在 中,
所以
二面角 的大小为
解法二:
以D为坐标原点,射线DA为x轴正半轴,建立如图所示的直角坐标系D-xyz
设 ,则
(Ⅰ)设 ,则
又故
所以M为侧棱SC的中点
(II)
由 ,得AM的中点
又所以
因此 等于二面角 的平面角
所以二面角 的大小为
(20)(本小题满分12分)(注意:在试题卷上作答无效)
甲、乙二人进行一次围棋比赛,约定先胜3局者获得这次比赛的胜利,比赛结束。设在一局中,甲获胜的概率为0.6,乙获胜的概率为0.4,各局比赛结果相互。已知前2局中,甲、乙各胜1局。
(Ⅰ)求再赛2局结束这次比赛的概率;
(Ⅱ)求甲获得这次比赛胜利的概率。
【解析】本小题考查互斥有一个发生的概率、相互同时发生的概率,综合题。
解:记“第 局甲获胜”为 ,“第 局乙获胜”为 。
(Ⅰ)设“再赛2局结束这次比赛”为A,则
,由于各局比赛结果相互,故
(Ⅱ)记“甲获得这次比赛胜利”为B,因前两局中,甲、乙各胜1局,故甲获得这次比赛胜利当且仅当在后面的比赛中,甲先胜2局,从而
,由于各局比赛结果相互,故
(21)(本小题满分12分)(注意:在试题卷上作答无效)
已知函数 .
(Ⅰ)讨论 的单调性;
(Ⅱ)设点P在曲线 上,若该曲线在点P处的切线 通过坐标原点,求 的方程
【解析】本小题考查导数的应用、函数的单调性,综合题。
解:(Ⅰ)
令 得 或 ;
令 得 或
因此, 在区间 和 为增函数;在区间 和 为减函数。
(Ⅱ)设点 ,由 过原点知, 的方程为 ,
因此 ,
即 ,
整理得 ,
解得 或
因此切线 的方程为 或
(22)(本小题满分12分)(注意:在试题卷上作答无效)
如图,已知抛物线 与圆 相交于A、B、C、D四个点。
(Ⅰ)求 的取值范围
(Ⅱ)当四边形ABCD的面积时,求对角线AC、BD的交点P的坐标。
整理得 ①
与 有四个交点的充要条件是:方程①有两个不相等的正根
由此得
解得
又所以 的取值范围是
(II) 设四个交点的坐标分别为 、 、 、 。
则由(I)根据韦达定理有 ,
则令 ,则 下面求 的值。
方法1:由三次均值有:
当且仅当 ,即 时取值。经检验此时 满足题意。
方法2:设四个交点的坐标分别为 、 、 、
则直线AC、BD的方程分别为
解得点P的坐标为 。
设 ,由 及(Ⅰ)得
由于四边形ABCD为等腰梯形,因而其面积
则将 , 代入上式,并令 ,得
,∴ ,
令 得 ,或 (舍去)
当 时, ;当 时 ;当 时,
故当且仅当 时, 有值,即四边形ABCD的面积,故所求的点P的坐标为
高考文科数学知识点总结归纳
20.(本小题满分13分)对于文科生来说,数学是一门比较特别的学科,高考要想数学分数高,必须掌握必考知识点。下面是我为大家整理的高考文科数学知识点,希望对大家有所帮助。
高考文科数学知识点
,函数与导数
主要考查运算、函数的有关概念定义域、值域、解析式、函数的极限、连续、导数。
第二,平面向量与三角函数、三角变换及其应用
这一部分是高考的重点但不是难点,主要出一些基础题或中档题。
第三,数列及其应用
这部分是高考的重点而且是难点,主要出一些综合题。
第四,不等式
主要考查不等式的求解和证明,而且很少单独考查,主要是在解答题中比较大小。是高考的重点和难点。
第五,概率和统计
第六,空间位置关系的定性与定量分析
主要是证明平行或垂直,求角和距离。主要考察对定理的熟悉程度、运用程度。
第七,解析几何
高考的难点,运算量大,一般含参数。
文科数学高频必考考点
部分:选择与填空
1.的基本运算(含新定中的运算,强调中元素的互异性);
2.常用逻辑用语(充要条件,全称量词与存在量词的判定);
3.函数的概念与性质(奇偶性、对称性、单调性、周期性、值域值最小值);
4.幂、指、对函数式运算及图像和性质
5.函数的零点、函数与方程的迁移变化(通常用反客为主法及数形结合思想);
6.空间体的三视图及其还原图的表面积和体积;
7.空间中点、线、面之间的位置关系、空间角的计算、球与多面体外接或内切相关问题;
8.直线的斜率、倾斜角的确定;直线与圆的位置关系,点线距离公式的应用;
9.算法初步(认知框图及其功能,根据所给信息,几何数列相关知识处理问题);
10.古典概型,几何概型理科:排列与组合、二项式定理、正态分布、统计案例、回归直线方程、性检验;文科:总体估计、茎叶图、频率分布直方图;
11.三角恒等变形(切化弦、升降幂、辅助角公式);三角求值、三角函数图像与性质;
12.向量数量积、坐标运算、向量的几何意义的应用;
13.正余弦定理应用及解三角形;
14.等、等比数列的性质应用、能应用简单的地推公式求其通项、求项数、求和;
16.圆锥曲线的性质应用(特别是会求离心率);
17.导数的几何意义及运算、定积分简单求法
18.复数的概念、四则运算及几何意义;
19.抽象函数的识别与应用;
第二部分:解答题
第17题:向量与三角交汇问题,解三角形,正余弦定理的实际应用;
第18题:(文)概率与统计(概率与统计相结合型)
(理)离散型随机变量的概率分布列及其数字特征;
第19题:立体几15.线性规划的应用;会求目标函数;何
①证线面平行垂直;面与面平行垂直
②求空间中角(理科特别是二面角的求法)
③求距离(理科:动态性)空间体体积;
第20题:解析几何(注重思维能力与技巧,减少计算量)
①求曲线轨迹方程(用定义或待定系数法)
②直线与圆锥曲线的关系(灵活运用点法长公式)
第21题:函数与导数的综合应用
这是一道典型应用知识网络的交汇点设计的试题,是考查考生解题能力和文科数学素质为目标的压轴题。
主要考查:分类讨论思想;化归、转化、迁移思想;整体代换、分与合思想
一般设计三问:
①求待定系数,利用求导讨论确定函数的单调性;
②求参变数取值或函数的最值;
③探究性问题或证不等式恒成立问题。
第22题:三选一:
(1)几何证明主要考查三角形相似,圆的切割线定理,证明成比例,求角度,求长度;利用射影定理解决圆中计算和证明问题是历年高考题的 热点 ;
(2)坐标系与参数方程,主要抓两点:参数方程、极坐标方程互化为普通方程;有参数、极坐标方程求解曲线的基本量。这类题,思路清晰,难度不大,抓基础,不做难题。
(3)不等式选讲:不等式与函数结合型。设计上为:①解含有参变数关于x的不等式;②求解不等式恒成立时参变数的取值;③证明不等式(利用均值定理、放缩法等)。
2018高考文科数学知识点:高中数学知识点 总结
必修一:1、与函数的概念(这部分知识抽象,较难理解)2、基本的初等函数(指数函数、对数函数)3、函数的性质及应用(比较抽象,较难理解)
必修二:1、立体几何(1)、证明:垂直(多考查面面垂直)、平行(2)、求解:主要是夹角问题,包括线面角和面面角
这部分知识是高一学生的难点,比如:一个角实际上是一个锐角,但是在图中显示的钝角等等一些问题,需要学生的立体意识较强。这部分知识高考占22---27分
2、直线方程:高考时不单独命题,易和圆锥曲线结合命题
3、圆方程:
必修三:1、算法初步:高考必考内容,5分(选择或填空)2、统计:3、概率:高考必考内容,09年理科占到15分,文科数学占到5分
必修四:1、三角函数:(图像、性质、高中重难点,)必考大题:15---20分,并且经常和其他函数混合起来考查
2、平面向量:高考不单独命题,易和三角函数、圆锥曲线结合命题。09年理科占到5分,文科占到13分
必修五:1、解三角形:(正、余弦定理、三角恒等变换)高考中理科占到22分左右,数学占到13分左右2、数列:高考必考,17---22分3、不等式:(线性规划,听课时易理解,但做题较复杂,应掌握技巧。高考必考5分)不等式不单独命题,一般和函数结合求最值、解集。
高考文科数学知识点总结
乘法与因式分解
a2-b2=(a+b)(a-b)
a3+b3=(a+b)(a2-ab+b2)
a3-b3=(a-b)(a2+ab+b2)
三角不等式
|a+b|≤|a|+|b|
|a-b|≤|a|+|b|
|a|≤b<=>-b≤a≤b
|a-b|≥|a|-|b|-|a|≤a≤|a|
一元二次方程的解
-b+√(b2-4ac)/2a-b-b+√(b2-4ac)/2a
根与系数的关系
X1+X2=-b/aX1__X2=c/a注:韦达定理
判别式
b2-4a=0注:方程有相等的两实根
b2解:由题双曲线 的一条渐近线方程为 ,代入抛物线方程整理得 ,因渐近线与抛物线相切,所以 ,即 ,故选择C。-4ac>0注:方程有一个实根
b2-4ac<0注:方程有共轭复数根
三角函数公式
两角和公式
sin(A+B)=sinAcosB+cosAsinB
sin(A-B)=sinAcosB-sinBcosA
cos(A+B)=cosAcosB-sinAsinB
cos(A-B)=cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/(1-tanAtanB)
tan(A-B)=(tanA-tanB)/(1+tanAtanB)
ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA)
ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)
倍角公式
tan2A=2tanA/(1-tan2A)
ctg2A=(ctg2A-1)/2ctga
cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a
半角公式
sin(A/2)=-√((1-cosA)/2)
cos(A/2)=√((1+cosA)/2)
cos(A/2)=-√((1+cosA)/2)
tan(A/2)=√((1-cosA)/((1+cosA))
tan(A/2)=-√((1-cosA)/((1+cosA))
ctg(A/2)=√((1+cosA)/((1-cosA))
ctg(A/2)=-√((1+cosA)/((1-cosA))
和化积公式
2sinAcosB=sin(A+B)+sin(A-B)
2cosAsinB=sin(A+B)-sin(A-B)
-2sinAsinB=cos(A+B)-cos(A-B)
sinA+sinB=2sin((A+B)/2)cos((A-B)/2
cosA+cosB=2cos((A+B)/2)sin((A-B)/2)
tanA+tanB=sin(A+B)/cosAcosB
tanA-tanB=sin(A-B)/cosAcosB
ctgA+ctgBsin(A+B)/sinAsinB
-ctgA+ctgBsin(A+B)/sinAsinB
某些数列前n项和公式
1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2
1+3+5+7+9+11+13+15+…+(2n-1)=n2
2+4+6+8+10+12+14+…+(2n)=n(n+1)
12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6
13+23+33+43+53+63+…n3=n2(n+1)2/4
1__2+2__3+3__4+4__5+5__6+6__7+…+n(n+1)=n(n+1)(n+2)/3
正弦定理:a/sinA=b/sinB=c/sinC=2R
注:其中R表示三角形的外接圆半径
余弦定理:b2=a2+c2-2accosB
注:角B是边a和边c的夹角
高考文科数学知识点总结相关 文章 :
★ 2022卷高考文科数学试题及解析
★ 2022全国新高考Ⅰ卷文科数学试题及解析
★ 2022年全国新高考1卷数学试题及解析
★ 2022全国新高考Ⅱ卷文科数学试题及解析
★ 高中导数知识点总结大全
★ 山东2022高考文科数学试题及解析
★ 湖北2022高考文科数学试题及解析
★ 2022河北高考文科数学试题及解析
★ 高中文科数学复习指导与注意事项
★ 2017高考数学三角函数知识点总结 var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = ""; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();
2009年全国1文科英语高考试题
如果这部分和我们的生活联系比较大,属应用题。 互斥,那么 球的表面积公式全国一卷的英语试卷是文理科通用的。
能力是指空间想象能力、抽象概括能力、推理论证能力、运算求解能力、数据处理能力以及应用意识和创新意识.全国二卷的语文试卷也是文理科通用的。
文理科不同之处只在于数学卷分理科数学和文科数学卷,还有就是综合卷不同了。