高考函数题怎么解答的_高考函数题型解题技巧

龙途教育 1次浏览

摘要:高中数学导数难题解题技巧 导数是高考数学必考的内容,近年来高考加大了对以导数为载体的知识问题的考查,题型

高中数学导数难题解题技巧

导数是高考数学必考的内容,近年来高考加大了对以导数为载体的知识问题的考查,题型在难度、深度和广度上不断地加大、加深,从而使得导数相关知识愈发显得重要。下面是我为大家整理的关于高中数学导数难题解题技巧,希望对您有所帮助。欢迎大家阅读参考学习!

高考函数题怎么解答的_高考函数题型解题技巧高考函数题怎么解答的_高考函数题型解题技巧


高考函数题怎么解答的_高考函数题型解题技巧


高考函数题怎么解答的_高考函数题型解题技巧


高考函数题怎么解答的_高考函数题型解题技巧


1高中数学导数难题解题技巧

1.导数在判断函数的单调性、最值中的应用

利用导数来求函数的最值的一般步骤是:(1)先根据求导公式对函数求出函数的导数;(2)解出令函数的导数等于0的自变量;(3)从导数性质得出函数的单调区间;(4)通过定义域从单调区间中求出函数最值。

2.导数在函数极值中的应用

利用导数的知识来求函数极值是高中数学问题比较常见的类型。利用导数求函数极值的一般步骤是:(1)首先根据求导法则求出函数的导数;(2)令函数的导数等于0,从而解出导函数的零点;(3)从导函数的零点个数来分区间讨论,得到函数的单调区间;(4)根据极值点的定义来判断函数的极值点,再求出函数的极值。

3.导数在求参利用m是ab的中点,把直线pa和pb用点和斜率表示(斜率为x/p)数的取值范围时的应用

利用导数求函数中的某些参数的取值范围,成为近年来高考的 热点 。在一般函数含参数的题中,通过运用导数来化简函数,可以更快速地求出参数的取值范围。

2高中数学解题中导数的妙用

函数知识是高中数学的重点内容,其中包括极值、图像、奇偶性、单调性等方面的分析,具有代表性的题型就是极值的计算和单调性的分析,按照普通的解题过程是通过图像来分析,可是对于较难的函数来说,制作图像不仅浪费时间,而且极容易出错,而在函数解题中应用导数简直就是手到擒来。

例如:函数f(x)=x3+3x2+9x+a,分析f(x)的单调性。这是高中数学中常见的三次函数,在对这道题目进行单调性分析时,很多学生根据思维定式会采用常规的手法画图去分析单调区间,但由于未知数a的存在而遇到困难。如果考虑用导数的相关知识解决这一问题,解:f’(x)=-3x2+6x+9,令f’(x)>0,那么解得x<-1或者x>3,也就是说函数在(-∞,-1),(3,+∞)这个单调区间上单调递减,这样就能非常容易的判断函数的单调性。

导数知识在方程求根解题中的妙用

导数知识在方程求根中的应用属于一项重点内容,在平时的数学练习中以及高考的考察中均曾以不同的难度形式出现过。导数知识能针对方程求根,根据导函数的求解能判断原函数的根的个数。在解这一类问题的时候,解题思路:教师要善于学生利用导函数与X轴的交点个数来判断方程根的个数。

学会审题,才会解题

考前保持头脑清醒,要摒弃杂念,不断进行积极的心理暗示,创设宽松的氛围,创设高考数学必考题型是什么数学情境,进而酝酿数学思维,静能生慧,满怀信心的进行针对性的自我安慰,以平稳自信、积极主动的心态准备应考。这就要求我们要善于观察。

先做简单题,后做难题

从我们的心理学角度来讲,一般拿到试卷以后,心情比较紧张,此时不要急于下手解题,可以先对试题多少、分布、难易程度从头到尾浏览一遍,做题要先易后难,做到心中有数,一般简单的题目占全卷60%,这是很重要的一部分分数,见到简单题要细心解题,尽量使用数学语言,而且要更加严谨以振奋精神,养成良好的审题习惯鼓舞信心。

如果顺序做题既耗费时间又拿不到分,会做的题又被耽误了。所以先做简单题,多年的 经验 告诉我们,当你解题不顺利时,更要冷静,静下心来,沉住气,根据自己的实际情况,果断跳过自己不会做的题目,把简单的都做完,如果我们能把这部分的分数拿到,就已经打了胜仗,再集中精力做比较难的题,有了胜利的信心,面对住偏难的题更要有耐心,不要着急,可以先放弃,但也要注意认真对待每一道题,不能走马观花,要相信自己。到应有的分数。还有善于把难题转换成简单的题目的能力。

4高中数学的解题技巧

审题技巧

审题是正确解题的关键,是对题目进行分析、综合、寻求解题思路和 方法 的过程,审题过程包括明确条件与目标、分析条件与目标的联系、确定解题思路与方法三部分。(1)条件的分析,一是找出题目中明确告诉的已知条件,二是发现题目的隐含条件并加以揭示。目标的分析,主要是明确要求什么或要证明什么;把复杂的目标转化为简单的目标;把抽象目标转化为具体的目标;把不易把握的目标转化为可把握的目标。

(2)分析条件与目标的联系。每个数学问题都是由若干条件与目标组成的。解题者在阅读题目的基础上,需要找一找从条件到目标缺少些什么?或从条件顺推,或从目标分析,或画出关联的草图并把条件与目标标在图上,找出它们的内在联系,以顺利实现解题的目标。(3)确定解题思路。一个题目的条件与目标之间存在着一系列必然的联系,这些联系是由条件通向目标的桥梁。用哪些联系解题,需要根据这些联系所遵循的数学原理确定。解题的实质就是分析这些联系与哪个数学原理相匹配。

类型题掌握,提升发散性

学习的过程也是知识的积累过程,所以,不论是哪一学科,都不能期待能一朝实现学校目标,而数学亦是如此。所以,在日常解答某些类型数学题的时候,对其题型加以掌握,这是提高学生解题能力,培养学生解题技巧的重要途径之一,并且效果良好。

但是有一点我们必须铭记,类型习题的整理和记忆是指对其解题思路的记忆,并不是对其解答过程的记忆。如一位学生只是对这道题的解题过程加以记录,不去分析,不去思考其解答方式的亮点,那么即使他整理再多的习题,也无法取得应有的效果,只会将学习停留在表面。

高中数学导数难题解题技巧相关 文章 :

1. 高中数学解题技巧冲刺得分题

2. 高中数学六种解题技巧与五种数学答题思路

3. 高二数学不好怎么办?遇到困难怎么办

4. 高中数学导数练习题及

6. 高二数学学习方法指导与学习方法总结

7. 高二数学:学习方法 导数如何学

8. 高中数学大题的解题技巧及解题思想

9. 高中数学解答题8个答题模板与做大题的方法

10. 高考数学答题技巧

#高考数学解题技巧

2、零点分段讨论法:适用于含一个字母的多个的情况。

#高考数学解题技巧如下:

判断线性方程组有无非零实根的增广矩阵和系数矩阵的关系。

解决问题、代数式求值、解含参方程、一元二次不等式的解法,具体如下:

一、解决问题

主要包括化简、求值、方程、不等式、函数等题,基本思路是把含的问题转化为不含的问题。具体转化方法有:

1、分类讨论法:根据符号中的数或式子的正、零、即y=x^2/p-b负分情况去掉。

二、代数式求值

方法有:直接代入法、化简代入法、适当变形法(和积代入法)注意:当求值的代数式是字母的“对称式”时,通常可以化为字母“和与积”的形式,从而用“和积代入法”求值。

三、解含参方程

方程中除过未知数以外,含有的其它字母叫参数,这种方程叫含参方程。解含参方程一般要用分类讨论法,其原则是:按照类型求解、根据需要讨论、分类写出结论。

怎么用线性代数解高考数学题?

先标记每行的个非0数,除去这些所标记的数所在的列,其它列即为所求自由变量。

最小化问题的转化。求min z等价于求max(-z),因此题型二,只需改变目标函数的符号就可以实现化和最小化之间先求导,f‘(x)=x^2+a,负无穷,-1)上为增函数,在(-1,1)上为减函数的转换。

线性代数重要定理

对一个 n 行 n 列的非零矩阵 A,如果存在一个矩阵 B 使 AB = BA =E(E是单位矩阵),则 A 为非奇异矩阵(或称可逆矩阵),B为A的逆阵。

矩阵非奇异当且仅当它代表的线性变换是个自同构。

矩阵半正定当且仅当它的每个特征值大于或等于零。

矩阵正定当且仅当它的每个特征值都大于零。

解线性方程组的克拉默选项原则;范围原则;定量转定性原则;选项对比原则;题目暗示原则;选择项暗示原则;客观接受原则;语言的度原则。经过我的培训,很多的学生的选择题甚至1分都不丢。法则。

高中数学解析几何,求思路和

3、能定性分析就不要定量计算;

切线斜率K=y'=①定元:根据已知条件确定离散型随机变量的取值。x/p=(x^2/2p-b)/(x-t)

4. 高三数学函数与导数复习

化简得x^2-2tx+2pb=0

韦达定理得x1+x2=2t x1x2=2pb

Mx=(x1+x2)/2=t My=(x1^2+x^2)/2p/2=(t^2/p-b)

(2)Kab=(x1^2-x2^2)/2p/(x1-x2)=t/p

|AB|=√[(1+t^2/p^2)(x1-x2)^2]=√[(4t^2-8pb)(1+t^2/p^2)]>=√(-8pb)=2√(-2pb)

【当且仅当t=0时取等号】

(3)xm=xp故倾斜角=90°;

PM=Ym-Yp=t^2/p-2b

t趋于无穷时,极限=2;

怎么还有最值、、、诡异、、。

伤脑细胞啊

小题为:tx=py+2pb

看不清

如何解高考函数压轴题,有什么统一的思想方法吗

解题方法:①先求某一项,或者找到数列的关系式;②求通项公令m(x,y),式;③求数列和通式。

1.对基础知识梳理不够清楚,当在课堂上老师综合讲题时,说道某个知识点就一提而过 ,而你反应不过来,或模糊不清。AB/PM=]=√[(4t^2-8pb)(1+t^2/p^2)]/(t^2/p-2b)=2√[(p^2+t^2)/(t^2-2pb)]2.盲目做了一堆题,而不总结归类。 我以前高1时也觉函数难,主要是对数函数,指数函数,幂函数定义混,还有难点是求定义域,值域,一般把这搞懂,就不会害怕, 其实函数只要是学生都怕,高中把最难知识放在高1。 我有一个好多人都试过管用的方法,你在今年暑把学过的数学书全拿出来,打开目录,只学概念,看例题例题,在自己做例题,不要贪多,这样当你把书过一遍,就会有个新的提高,相信我。另外如果你概念不清,建议可以买一本高中数学公式书,还有数学要多练,光看还不行,要自己多动手,多总结错题,把同种类型归类,有量变就会有质变,耐心等待。祝你取得好成绩。

#高考数学解题技巧

运用三角函数性质解题,通常考查正弦、余弦函数的单调性、周期性、最值、对称轴及对称中心。

#高考数学解题技巧如下:

解三角函数问题、判断三角形形状、正余弦定理的应用。

解决问题、代数式求值、解含参方程、一元二次不等式的解法,具体如下:

很多考生对审题重视不够,往往要做的题目都没有看清楚就急于下笔,审好题是做题的关键,审题一一定要逐字逐句的看清楚,通过审题发现题目有无易漏、易错点,只有仔细审题才能从题目中获取更多的信息,只有挖掘题目中的隐含条件、启发解题思路,提醒常见解题误区和自己易出现的错误,才能提高解题能力。只有认真的审题,谨慎的态度,才能准确地揣摩出题者的意图,发现更多的信息,从而快速找到解题方向。

一、解决问题

主要包括化简、求值、方程、不等式、函数等题,基本思路是把含的问题转化为不含的问题。具体转化方法有:

1、分类讨论法:根据符号中的数或式子的正、零、负分情况去掉。

二、代数式求值

方法有:直接代入法、化简代入法、适当变形法(和积代入法)注意:当求值的代数式是字母的“对称式”时,通常可以化为字母“和与积”的形式,从而用“和积代入法”求值。

三、解含参方程

方程中除过未知数以外,含有的其它字母叫参数,这种方程叫含参方程。解含参方程一般要用分类讨论法,其原则是:按照类型求解、根据需要讨论、分类写出结论。

高考中函数零点的题型及解法

利用已知条件和选择支所提供的信息,从四个选项中剔除掉三个错误的,从而达到正确选择的目的。这是一种常用的方法,尤其是为定值,或者有数值范围时,取特殊点代入验证即可排除。

二、由数到形实现零点交点的互化 函数y=f(x)的零点,即函数y=f(x)的图像与x轴的交点的横坐标。因此,求函数的零点问题可转化为函数y=f(x)图像与x轴的交点的横坐标,或将方程f(x)=0整理成f1(x)=f2(x)形式,然后在同一直角坐标系下,画出两函数的图像,交点的横坐标即为函数的零点,交点的个数即为函数的零点个数。

注:在解题中,若遇到函数形式复杂难以作图时,则不妨先整理表达式,一般以所涉及的函数能作其图象为整理要求。接着在同一坐标系下,规范作图,然后确定交点的位置或个数,特别在部分区间上是否存在交点,要细心对待,有时还需计算相关的函数值(函数值的趋势)来确定例如,某一证明问题:方程x-sinx=0,只有一个根x=0。在分析这一问题时实际上就是利用函数的单调性质和特殊值来确定f(x)=0。其证明过程需首先利用到导数知识,令f(x)=x-sinx,定义域为R,求导f(x)=1-cosx>0,再利用函数单调性及数形结合思想,求得x=0是次方程的根。此内容的应用就是最为典型的导数知识在方程求根中的应用。是否有交点。

三、依存定理 如果函数y=f((1)设切点(x,x^2/2p)x)在区间[a,b]上的图像时联系不断的一条曲线,并且有f(a)f(b)<0,那么函数y=f(x)在区间(a,b)内有零点。即存在c∈(a,b),使得f(c)=0。通常将此论述称为零点存在性定理。因此,该解题策略就是将函数零点分布问题转化为判断不等式f(a)f(b)<0是否成立。

题型一:已知零点个数求参数范围

题型二:求零点所在区间

题型三:求零点个数

高考数学必考题型及答题技巧是什么

不等式约束的处理。不等式约束可以通过引入松弛变量或剩余变量转化为等式约束。

高中数学是比较难的,想要学好高中数学,必须认真听讲,认真做题,我整理了高考数学必考题型和答题技巧,来看一下!

一、依据概念 化为方程求根对于函数y=f(x),我们把f(x)=0使的实数x叫做函数y=f(x)的零点,因此,该方法就是将函数的零点问题转化为方程f(x)=0的问题来解答。

题型一

运用同三角函数关系、诱导公式、和、、倍、半等公式进行化简求值类。

题型三

数列的通向公式的(2)①确定ξ取值;②计算概率;③得分布列;④求数学期望。求法。

高考数学答题技巧有哪些

1、函数或方程或不等式的题目,先直接思考后建立三者的联系。首先考虑定义域,其次使用“三合一定理”。

2、如果在方程或是不等式中出现超越式,优先选择数形结合的思想方法;

3、面对含有参数的初等函数来说,在研究的时候应该抓住参数没有影响到的不变的性质。如所过的定点,二次函数的对称轴或是……;

4、选择与填空中出现不等式的题目,优选特殊值法;

6、恒成立问题或是它的反面,可以转化为最值问题,注意二次函数的应用,灵活使用闭区间上的最值,分类讨论的思想,分类讨论应该不重复不遗漏;

7、圆锥曲线的题目优先选择它们的定义完成,直线与圆锥曲线相交问题,若与弦的中点有关,选择设而不求点法,与弦的中点无关,选择韦达定理公式法;使用韦达定理必须先考虑是否为二次及根的判别式;

高中三角函数题目解法

①提关系:从题设条件中提取不等关系式。

三角函数最值问题类型归纳 三角函数的最值问题是三角函数基础知识的综合应用,近几年的高考题中经常出现。其出现的形式,或者是在小题中单纯地考察三角函数的值域问题;或者是隐含在解答题中,作为解决解答题所用的知识点之一;或者在解决某一问题时,应用三角函数有界性会使问题更易于解决(比如参数方程)。题目给出的三角关系式往往比较复杂,进行化简后,再进行归纳,主要有以下几种类型。掌握这几种类型后,几乎所有的三角函数最值问题都可以解决。 1.y=asinx+bcosx型的函数 特点是含有正余弦函数,并且是一次式。解决此类问题的指导思想是把正、余弦函数转化为只有一种三角函数。应用课本中现成的公式即可:y=sin(x+φ),其中tanφ=。例1.当-≤x≤时,函数f(x)=sinx+cosx的( D ) A、值是1,最小值是-1B、值是1,最小值是- C、值是2,最小值是-2D、值是2,最小值是-1 分析:解析式可化为f(x)=2sin(x+),再根据x的范围来解即可。 2.y=asin2x+bsinxcosx+cos2x型的函数特点是含有sinx, cosx的二次式,处理方式是降幂,再化为型1的形式来解。 例2.求y=sin2x+2sinxcosx+3cos2x的最小值,并求出y取最小值时的x的。 解:y=sin2x+2sinxcosx+3cos2x =(sin2x+cos2x)+sin2x+2cos2x =1+sin2x+1+cos2x =2+ 当sin(2x+)=-1时,y取最小值2-,此时x的。3.y=asin2x+bcosx+c型的函数 特点是含有sinx, cosx,并且其中一个是二次,处理方式是应用sin2x+cos2x=1,使函数式只含有一种三角函数,再应用换元法,转化成二次函数来求解。 例3.求函数y=cos2x-2asinx-a(a为常数)的值M。 解:y=1-sin2x-2asinx-a=-(sinx+a)2+a2+1-a,令sinx=t,则y=-(t+a)2+a2+1-a, (-1≤t≤1) (1) 若-a<-1时,即a>1时, 在t=-1时,取值M=a。(2) 若-1≤-a≤1,即-1≤a≤1时,在t=-a时,取值M=a2+1-a。(3) 若-a>1,即a<-1时,在t=1时,取大值M=-3a。4.y=型的函数 特点是一个分式,分子、分母分别会有正、余弦的一次式。几乎所有的分式型都可以通过分子,分母的化简,整理成这个形式,它的处理方式有多种。 例4.求函数y=的值和最小值。 解法1:原解析式即:sinx-ycosx=2-2y, 即sin(x+φ)=, ∵ |sin(x+φ)|≤1,∴≤1,解出y的范围即可。 解法2:表示的是过点(2, 2)与点(cosx, sinx)的斜率,而点(cosx, sinx)是单位圆上的点,观察图形可以得出在直线与圆相切时取极值。 解法3:应用公式设t=tan(),则y=,即(2-3y)t2-2t+2-y=0,根据Δ≥0解出y的最值即可。 5.y=sinxcos2x型的函数。 它的特点是关于sinx,cosx的三次式(cos2x是cosx的二次式)。因为高中数学不涉及三次函数的最值问题,故几乎所有的三次式的最值问题(不只是在三角)都用均值不等式来解(没有其它的方法)。但需要注意是否符合应用的条件(既然题目让你求,多半是符合使用条件的,但做题不能少这一步),及等号是否能取得。 例5.若x∈(0,π),求函数y=(1+cosx)·sin的值。 解:y=2cos2·sin>0,每一个线性空间都有一个基。 y2=4cos4sin2=2·cos2·cos2·2sin2所以04、几何意义法:适用于有明显几何意义的情况。

版权声明:本文发布于龙途教育 图片、内容均来源于互联网 如有侵权联系836084111@qq.com删除
随机内容